Qin Jinlei, Pei Fei, Wang Rui, Wu Lin, Han Yan, Xiao Pei, Shen Yue, Yuan Lixia, Huang Yunhui, Wang Deli
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Adv Mater. 2024 May;36(21):e2312773. doi: 10.1002/adma.202312773. Epub 2024 Feb 21.
Constructing large-area artificial solid electrolyte interphase (SEI) to suppress Li dendrites growth and electrolyte consumption is essential for high-energy-density Li metal batteries (LMBs). Herein, chemically exfoliated ultrathin MoS nanosheets (EMoS) as an artificial SEI are scalable transfer-printed on Li-anode (EMoS@Li). The EMoS with a large amount of sulfur vacancies and 1T phase-rich acts as a lithiophilic interfacial ion-transport skin to reduce the Li nucleation overpotential and regulate Li flux. With favorable Young's modulus and homogeneous continuous layered structure, the proposed EMoS@Li effectively suppresses the growth of Li dendrites and repeat breaking/reforming of the SEI. As a result, the assembled EMoS@Li||LiFePO and EMoS@Li||LiNiCoMnO batteries demonstrate high-capacity retention of 93.5% and 92% after 1000 cycles and 300 cycles, respectively, at ultrahigh cathode loading of 20 mg cm. Ultrasonic transmission technology confirms the admirable ability of EMoS@Li to inhibit Li dendrites in practical pouch batteries. Remarkably, the Ah-class EMoS@Li||LiNiCoMnO pouch battery exhibits an energy density of 403 Wh kg over 100 cycles with the low negative/positive capacity ratio of 1.8 and electrolyte/capacity ratio of 2.1 g Ah. The strategy of constructing an artificial SEI by sulfur vacancies-rich and 1T phase-rich ultrathin MoS nanosheets provides new guidance to realize high-energy-density LMBs with long cycling stability.
构建大面积人工固体电解质界面(SEI)以抑制锂枝晶生长和电解质消耗对于高能量密度锂金属电池(LMB)至关重要。在此,化学剥离的超薄MoS纳米片(EMoS)作为人工SEI可扩展地转移印刷在锂阳极上(EMoS@Li)。具有大量硫空位和富含1T相的EMoS作为亲锂界面离子传输皮层,以降低锂成核过电位并调节锂通量。凭借良好的杨氏模量和均匀连续的层状结构,所提出的EMoS@Li有效地抑制了锂枝晶的生长以及SEI的重复破裂/重整。结果,组装的EMoS@Li||LiFePO和EMoS@Li||LiNiCoMnO电池在20 mg cm的超高阴极负载下分别经过1000次循环和300次循环后,展现出93.5%和92%的高容量保持率。超声传输技术证实了EMoS@Li在实际软包电池中抑制锂枝晶的出色能力。值得注意的是,Ah级EMoS@Li||LiNiCoMnO软包电池在100次循环中表现出403 Wh kg的能量密度,负/正容量比低至1.8,电解质/容量比为2.1 g Ah。通过富含硫空位和富含1T相的超薄MoS纳米片构建人工SEI的策略为实现具有长循环稳定性的高能量密度LMB提供了新的指导。