Suppr超能文献

利用近红外光谱技术对水稻种子内部裂纹进行判别。

Discrimination of internal crack for rice seeds using near infrared spectroscopy.

机构信息

Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Oct 15;319:124578. doi: 10.1016/j.saa.2024.124578. Epub 2024 Jun 1.

Abstract

It is an important thing to identify internal crack in seeds from normal seeds for evaluating the quality of rice seeds (Oryza sativa L.). In this study, non-destructive discrimination of internal crack in rice seeds using near infrared spectroscopy and chemometrics is proposed. Principal component analysis (PCA) was used to analyze the rice seeds spectra. Four supervised classification techniques(partial least squares discriminate analysis (PLS-DA), support vector machines (SVM), k-nearest neighbors (KNN) and random forest (RF)) with four different pre-processing techniques (standard normal variate (SNV), multiplicative scatter correction (MSC), first and second derivative with Savitzky-Golay (SG) smoothing) were applied. The best results (Sn = 0.8824, Sp = 0.9429, Acc = 0.913) were achieved by PLS-DA with the raw spectral data. The performance of the best SVM model was inferior to that of PLS-DA, but superior to that of RF and KNN. Except for PLS-DA, four different preprocessing techniques were improved the performance of the developed models. The important variables for discriminating internal cracks in rice seeds were related to the amylose. Overall, the all results demonstrated the feasibility of non-destructive discrimination of internal crack for rice seeds (Oryza sativa L.) using near infrared spectroscopy and chemometrics.

摘要

鉴定正常种子中的内部裂缝对于评估水稻种子(Oryza sativa L.)的质量非常重要。在本研究中,提出了使用近红外光谱和化学计量学无损鉴别水稻种子内部裂缝的方法。主成分分析(PCA)用于分析水稻种子的光谱。应用了四种有监督的分类技术(偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、k-最近邻(KNN)和随机森林(RF))和四种不同的预处理技术(标准正态变量(SNV)、乘法散射校正(MSC)、一阶和二阶导数与 Savitzky-Golay(SG)平滑)。使用原始光谱数据,PLS-DA 获得了最佳结果(Sn = 0.8824,Sp = 0.9429,Acc = 0.913)。SVM 模型的性能虽然不如 PLS-DA,但优于 RF 和 KNN。除了 PLS-DA 之外,四种不同的预处理技术都提高了所开发模型的性能。用于鉴别水稻种子内部裂缝的重要变量与直链淀粉有关。总的来说,所有结果都证明了使用近红外光谱和化学计量学无损鉴别水稻种子(Oryza sativa L.)内部裂缝的可行性。

相似文献

1
Discrimination of internal crack for rice seeds using near infrared spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Oct 15;319:124578. doi: 10.1016/j.saa.2024.124578. Epub 2024 Jun 1.
4
Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics.
Food Chem. 2016 Nov 1;210:415-21. doi: 10.1016/j.foodchem.2016.04.117. Epub 2016 Apr 26.
5
The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.
Molecules. 2022 Jun 25;27(13):4091. doi: 10.3390/molecules27134091.
7
Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 15;229:117973. doi: 10.1016/j.saa.2019.117973. Epub 2019 Dec 23.
9
Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jun 15;217:147-154. doi: 10.1016/j.saa.2019.03.085. Epub 2019 Mar 26.
10
A calibration transfer optimized single kernel near-infrared spectroscopic method.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5;220:117098. doi: 10.1016/j.saa.2019.05.003. Epub 2019 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验