Suppr超能文献

多方面分析解析模型和数值模型,以确定无压含水层的可持续人工补给率。

Multi-Facet analysis of analytical and numerical models to resolve sustainable artificial recharge rates in unconfined aquifers.

机构信息

Department of Civil Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.

Department of Civil Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.

出版信息

J Environ Manage. 2024 Jun;362:121233. doi: 10.1016/j.jenvman.2024.121233. Epub 2024 Jun 4.

Abstract

Managed aquifer recharge (MAR) has emerged as a potential solution to resolve water insecurity, globally. However, integrated studies quantifying the surplus source water, suitable recharge sites and safe recharge capacity is limited. In this study, a novel methodology is presented to quantify transient injection rates in unconfined aquifers and generate MAR suitability maps based on estimated surplus water and permissible aquifer recharge capacity (PARC). Subbasin scale monthly surplus surface runoff was estimated at 75% dependability using a SWAT model. A linear regression model based on numerical solution was used to capture the aquifer response to injection and to calculate PARC values at subbasin level. The available surplus runoff and PARC values was then used to determine the suitable site and recharge rate during MAR operation. The developed methodology was applied in the semi-arid region of Lower Betwa River Basin (LBRB), India. The estimated surplus runoff was generally confined to the monsoon months of June to September and exhibited spatial heterogeneity with an average runoff rate of 5000 m/d in 85% of the LBRB. Analysis of the PARC results revealed that thick alluvial aquifers had large permissible storage capacity and about 50% of the LBRB was capable of storing over 3500 m/d of water. This study revealed that sufficient surplus runoff was generated in the LBRB, but it lacked the adequate safe aquifer storage capacity to conserve it. A total 65 subbasins was identified as the best suited sites for MAR which had enough surplus water and storage capacity to suffice 20% of the total water demand in the LBRB. The developed methodology was computationally efficient, could augment the field problem of determining scheduled recharge rates and could be used as a decision-making tool in artificial recharge projects.

摘要

含水层人工补给 (MAR) 已成为全球解决水安全问题的潜在解决方案。然而,量化剩余水源、适宜补给地点和安全补给容量的综合研究仍然有限。在这项研究中,提出了一种新的方法来量化无压含水层中的瞬态注入速率,并根据估计的剩余水量和可允许的含水层补给容量 (PARC) 生成 MAR 适宜性图。使用 SWAT 模型以 75%的可信度估计了子流域尺度的每月剩余地表径流量。基于数值解的线性回归模型用于捕获含水层对注入的响应,并计算子流域水平的 PARC 值。然后,将可用的剩余径流量和 PARC 值用于确定 MAR 运行期间的适宜地点和补给率。所开发的方法应用于印度下贝图河盆地 (LBRB) 的半干旱地区。估计的剩余径流量通常局限于季风月份 6 月至 9 月,并且具有空间异质性,LBRB 的平均径流量为 5000 m/d,占 85%。对 PARC 结果的分析表明,厚冲积含水层具有较大的允许存储容量,LBRB 的大约 50%能够储存超过 3500 m/d 的水。本研究表明,LBRB 产生了足够的剩余径流量,但缺乏足够的安全含水层储存能力来储存它。确定了 65 个子流域作为 MAR 的最佳选址,这些子流域具有足够的剩余水量和储存容量,足以满足 LBRB 总需水量的 20%。所开发的方法计算效率高,可以补充确定计划补给率的现场问题,并可作为人工补给项目的决策工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验