Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.
Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.
Exp Hematol. 2024 Jul;135:104248. doi: 10.1016/j.exphem.2024.104248. Epub 2024 Jun 2.
DNMT3A mutations are frequently found in clonal hematopoiesis and a variety of hematologic malignancies, including acute myeloid leukemia. An assortment of mouse models have been engineered to explore the tumorigenic potential and malignant lineage bias due to loss of function of DNMT3A in consort with commonly comutated genes in myeloid malignancies, such as Flt3, Nras, Kras, and c-Kit. We employed several tamoxifen-inducible Cre-ER murine model systems to study the effects of constitutively active Kras-driven myeloid leukemia (Kras) development together with heterozygous (3aHet) or homozygous Dnmt3a deletion (3aKO). Due to the rapid generation of diverse nonhematologic tumors appearing after tamoxifen induction, we employed a transplantation model. With pretransplant tamoxifen induction, most Kras mice died quickly of T-cell malignancies regardless of Dnmt3a status. Using posttransplant induction, we observed a dose-dependent effect of DNMT3A depletion that skewed the leukemic phenotype toward a myeloid lineage. Specifically, 64% of 3aKO/Kras mice had exclusively myeloid disease compared with 36% of 3aHet/Kras and only 13% of Kras mice. Here, 3aKO combined with Kras led to increased disease burden, multiorgan infiltration, and faster disease progression. DOT1L inhibition exerted profound antileukemic effects in malignant 3aKO/Kras cells, but not malignant cells with Kras mutation alone, consistent with the known sensitivity of DNMT3A-mutant leukemia to DOT1L inhibition. RNAseq from malignant myeloid cells revealed that biallelic Dnmt3a deletion was associated with loss of cell-cycle regulation, MYC activation, and TNF⍺ signaling. Overall, we developed a robust model system for mechanistic and preclinical investigations of acute myeloid leukemia with DNMT3A and Ras-pathway lesions.
DNMT3A 突变经常发生在克隆性造血和各种血液恶性肿瘤中,包括急性髓系白血病。已经设计了各种小鼠模型来探索由于 DNMT3A 功能丧失与髓系恶性肿瘤中常见的共突变基因(如 Flt3、NRAS、KRAS 和 c-Kit)协同作用导致的肿瘤发生潜力和恶性谱系偏向。我们使用了几种他莫昔芬诱导的 Cre-ER 小鼠模型系统来研究组成性激活的 Kras 驱动的髓系白血病(Kras)发展与杂合(3aHet)或纯合 Dnmt3a 缺失(3aKO)的影响。由于他莫昔芬诱导后迅速产生各种非血液肿瘤,我们使用了移植模型。在移植前用他莫昔芬诱导,大多数 Kras 小鼠无论 Dnmt3a 状态如何,很快都会因 T 细胞恶性肿瘤而死亡。使用移植后诱导,我们观察到 DNMT3A 耗竭的剂量依赖性效应,使白血病表型偏向髓系。具体而言,与 3aHet/Kras 相比,3aKO/Kras 小鼠中有 64%仅患有髓系疾病,而 3aKO/Kras 小鼠中仅有 13%患有髓系疾病。在这里,3aKO 与 Kras 结合导致疾病负担增加、多器官浸润和疾病进展加快。DOT1L 抑制对恶性 3aKO/Kras 细胞产生了深远的抗白血病作用,但对仅具有 Kras 突变的恶性细胞没有作用,这与已知的 DNMT3A 突变白血病对 DOT1L 抑制的敏感性一致。来自恶性髓系细胞的 RNAseq 显示,双等位基因 Dnmt3a 缺失与细胞周期调控、MYC 激活和 TNFα 信号丢失有关。总的来说,我们开发了一种强大的模型系统,用于研究具有 DNMT3A 和 Ras 通路病变的急性髓系白血病的机制和临床前研究。