Suppr超能文献

高阶相关性揭示了时态超图中的复杂记忆。

Higher-order correlations reveal complex memory in temporal hypergraphs.

作者信息

Gallo Luca, Lacasa Lucas, Latora Vito, Battiston Federico

机构信息

Department of Network and Data Science, Central European University, Vienna, Austria.

Institute for Cross-Disciplinary Physics and Complex Systems (IFISC), CSIC-UIB, Palma de Mallorca, Spain.

出版信息

Nat Commun. 2024 Jun 4;15(1):4754. doi: 10.1038/s41467-024-48578-6.

Abstract

Many real-world complex systems are characterized by interactions in groups that change in time. Current temporal network approaches, however, are unable to describe group dynamics, as they are based on pairwise interactions only. Here, we use time-varying hypergraphs to describe such systems, and we introduce a framework based on higher-order correlations to characterize their temporal organization. The analysis of human interaction data reveals the existence of coherent and interdependent mesoscopic structures, thus capturing aggregation, fragmentation and nucleation processes in social systems. We introduce a model of temporal hypergraphs with non-Markovian group interactions, which reveals complex memory as a fundamental mechanism underlying the emerging pattern in the data.

摘要

许多现实世界中的复杂系统具有随时间变化的群体间相互作用的特征。然而,当前的时间网络方法仅基于两两相互作用,无法描述群体动态。在此,我们使用时变超图来描述此类系统,并引入一个基于高阶相关性的框架来刻画其时间组织。对人类交互数据的分析揭示了连贯且相互依存的介观结构的存在,从而捕捉到社会系统中的聚集、分裂和成核过程。我们引入了一个具有非马尔可夫群体相互作用的时间超图模型,该模型揭示了复杂记忆是数据中出现的模式背后的一种基本机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验