Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China.
Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Br J Cancer. 2024 Jul;131(2):258-270. doi: 10.1038/s41416-024-02724-5. Epub 2024 Jun 4.
Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies.
Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGG) and tumor core (HGG) cells.
pHGG cells were intrinsically more invasive than their matching pHGG cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57CD133 cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57CD133 > CD57CD133 > CD57CD133 > CD57CD133 cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57CD133 cells in the HGG front (HGG/CD57CD133 cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57 (CD57/CD133 and CD57/CD133) cells into mouse brains reconstituted diffusely invasion, while depleting CD57 cells (i.e., CD57CD133) abrogated pHGG invasion.
We revealed significantly increased invasive capacities in HGG cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57CD133 and CD57CD133 cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
弥漫性浸润仍然是小儿高级别神经胶质瘤(pHGG)治疗失败的主要原因。需要鉴定 pHGG 浸润的细胞驱动因素,以进行抗浸润治疗。
对 10 种高度侵袭性的 pHGG 患者来源的原位异种移植(PDOX)模型进行了侵袭性(HGG)和肿瘤核心(HGG)细胞的配对分离。
pHGG 细胞天生比其匹配的 pHGG 细胞更具侵袭性。CSC 特征分析显示 CD133 和 CD57 的共阳性,并鉴定 CD57CD133 细胞为侵袭前沿中最丰富的 CSCs。除了发现新的自我更新能力顺序,即 CD57CD133 > CD57CD133 > CD57CD133 > CD57CD133 细胞外,我们还表明 CSC 层次结构受到其空间位置的影响,并且在 HGG 前沿(HGG/CD57CD133 细胞)中发现了最高的自我更新能力 CD57CD133 细胞,由 NANOG 和 SHH 的过度表达介导。直接将 CD57(CD57/CD133 和 CD57/CD133)细胞植入小鼠大脑中,重新构建了弥漫性浸润,而耗尽 CD57 细胞(即 CD57CD133)则消除了 pHGG 的浸润。
我们揭示了 HGG 细胞中侵袭能力显著增加,证实 CD57 是一种新的神经胶质瘤干细胞标志物,鉴定 CD57CD133 和 CD57CD133 细胞是 pHGG 浸润的新细胞驱动因素,并提出了一种新的 HGG 干细胞双重模式层次结构。