利用联邦学习提高体外受精胚胎选择中的数据隐私和性能。
Leveraging federated learning for boosting data privacy and performance in IVF embryo selection.
机构信息
Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
Department of Obstetrics and Gynecology, Chung Shan Medical University, Taichung, Taiwan.
出版信息
J Assist Reprod Genet. 2024 Jul;41(7):1811-1820. doi: 10.1007/s10815-024-03148-z. Epub 2024 Jun 4.
PURPOSE
To study the effectiveness of federated learning in in vitro fertilization on embryo evaluation tasks.
METHODS
This is a retrospective cohort analysis. Two datasets were used in this study. The ploidy status dataset consisted of 10,065 embryo records, 3760 treatments, and 2479 infertile couples from 5 hospitals. The clinical pregnancy dataset consisted of 4495 embryo records, 4495 treatments, and 3704 infertile couples from 4 hospitals. Federated learning and the gradient boosting decision tree algorithm were utilized for modeling.
RESULTS
On the ploidy status dataset, the areas under the receiver operating characteristic curves of our model trained with federated learning were 71.78%, 73.10%, 69.39%, 69.72%, and 73.46% for 5 hospitals respectively, showing an average increase of 2.5% compared to those of our model trained without federated learning. On the clinical pregnancy dataset, the areas under the receiver operating characteristic curves of our model trained with federated learning were 72.03%, 56.77%, 61.63%, and 58.58% for 4 hospitals respectively, showing an average increase of 3.08%.
CONCLUSIONS
Federated learning can improve data privacy and data security and meanwhile improve the performance of embryo selection tasks by leveraging data from multiple sources. This study demonstrates the effectiveness of federated learning in embryo evaluation, and the results show the promise for future application.
目的
研究联邦学习在体外受精胚胎评估任务中的有效性。
方法
这是一项回顾性队列分析。本研究使用了两个数据集。倍性状态数据集包含来自 5 家医院的 10065 个胚胎记录、3760 个治疗和 2479 对不孕夫妇。临床妊娠数据集包含来自 4 家医院的 4495 个胚胎记录、4495 个治疗和 3704 对不孕夫妇。使用联邦学习和梯度提升决策树算法进行建模。
结果
在倍性状态数据集上,我们使用联邦学习训练的模型的接收者操作特征曲线下面积分别为 5 家医院的 71.78%、73.10%、69.39%、69.72%和 73.46%,与未使用联邦学习训练的模型相比,平均提高了 2.5%。在临床妊娠数据集上,我们使用联邦学习训练的模型的接收者操作特征曲线下面积分别为 4 家医院的 72.03%、56.77%、61.63%和 58.58%,与未使用联邦学习训练的模型相比,平均提高了 3.08%。
结论
联邦学习可以通过利用来自多个来源的数据来提高数据隐私性和数据安全性,同时提高胚胎选择任务的性能。本研究证明了联邦学习在胚胎评估中的有效性,结果显示了未来应用的潜力。