Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
Nature. 2021 Jun;594(7862):265-270. doi: 10.1038/s41586-021-03583-3. Epub 2021 May 26.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
快速、可靠地检测患有严重且异质性疾病的患者是精准医学的主要目标。可以基于血液转录组学使用机器学习来识别白血病患者。然而,由于隐私法规,技术上可行的和允许的之间存在越来越大的差距。在这里,为了在不违反隐私法的情况下促进整合来自全球任何数据所有者的任何医疗数据,我们引入了 Swarm Learning-一种去中心化的机器学习方法,它结合了边缘计算、基于区块链的对等网络和协调,同时在不需要中央协调器的情况下保持机密性,从而超越了联邦学习。为了说明使用 Swarm Learning 使用分布式数据开发疾病分类器的可行性,我们选择了四种异质疾病(COVID-19、结核病、白血病和肺部病变)的四个用例。使用来自 127 项临床研究的超过 16400 个血液转录组,这些研究的病例和对照组分布不均匀,存在大量研究偏差,以及超过 95000 张胸部 X 光图像,我们表明 Swarm Learning 分类器的性能优于单个站点开发的分类器。此外,Swarm Learning 通过设计完全满足本地机密性法规。我们相信这种方法将显著加速精准医学的引入。