Suppr超能文献

通过声力微流变学(AFMR)定量测量多种生物样本的粘弹性。

Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR).

机构信息

Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

Commun Biol. 2024 Jun 4;7(1):683. doi: 10.1038/s42003-024-06367-3.

Abstract

In the context of soft matter and cellular mechanics, microrheology - the use of micron-sized particles to probe the frequency-dependent viscoelastic response of materials - is widely used to shed light onto the mechanics and dynamics of molecular structures. Here we present the implementation of active microrheology in an Acoustic Force Spectroscopy setup (AFMR), which combines multiplexing with the possibility of probing a wide range of forces ( ~ pN to ~nN) and frequencies (0.01-100 Hz). To demonstrate the potential of this approach, we perform active microrheology on biological samples of increasing complexity and stiffness: collagen gels, red blood cells (RBCs), and human fibroblasts, spanning a viscoelastic modulus range of five orders of magnitude. We show that AFMR can successfully quantify viscoelastic properties by probing many beads with high single-particle precision and reproducibility. Finally, we demonstrate that AFMR to map local sample heterogeneities as well as detect cellular responses to drugs.

摘要

在软物质和细胞力学的背景下,微流变学——使用微米级颗粒来探测材料的频率相关粘弹性响应——被广泛用于揭示分子结构的力学和动力学。在这里,我们在声力光谱(AFMR)设置中实现了主动微流变学,该设置结合了多路复用以及探测广泛范围的力(pN 至nN)和频率(0.01-100Hz)的可能性。为了展示这种方法的潜力,我们对具有不同复杂度和刚度的生物样本进行了主动微流变学研究:胶原蛋白凝胶、红细胞(RBC)和人成纤维细胞,其粘弹性模量范围跨越五个数量级。我们表明,AFMR 可以通过用高单颗粒精度和可重复性探测许多颗粒来成功地量化粘弹性性质。最后,我们证明了 AFMR 可以绘制局部样品异质性以及检测细胞对药物的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b28/11150513/ff47114ea5b7/42003_2024_6367_Fig1_HTML.jpg

相似文献

1
Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR).
Commun Biol. 2024 Jun 4;7(1):683. doi: 10.1038/s42003-024-06367-3.
2
Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy.
Nat Methods. 2010 Aug;7(8):650-4. doi: 10.1038/nmeth.1474. Epub 2010 Jun 20.
3
Application of Microrheology in Food Science.
Annu Rev Food Sci Technol. 2017 Feb 28;8:493-521. doi: 10.1146/annurev-food-030216-025859. Epub 2017 Jan 12.
5
Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels.
PLoS One. 2013 Aug 2;8(8):e70590. doi: 10.1371/journal.pone.0070590. Print 2013.
6
7
Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells.
Phys Rev Lett. 2000 Jul 24;85(4):880-3. doi: 10.1103/PhysRevLett.85.880.
8
Near-surface microrheology reveals dynamics and viscoelasticity of soft matter.
Soft Matter. 2018 Dec 12;14(48):9764-9776. doi: 10.1039/c8sm01886c.

本文引用的文献

1
Viscoelastic phenotyping of red blood cells.
Biophys J. 2024 Apr 2;123(7):770-781. doi: 10.1016/j.bpj.2024.01.019. Epub 2024 Jan 23.
2
Quantitative Acoustophoresis.
ACS Nanosci Au. 2022 Aug 17;2(4):341-354. doi: 10.1021/acsnanoscienceau.2c00002. Epub 2022 Jun 22.
4
Investigation of Red Blood Cells by Atomic Force Microscopy.
Sensors (Basel). 2022 Mar 7;22(5):2055. doi: 10.3390/s22052055.
6
Multi-frequency passive and active microrheology with optical tweezers.
Sci Rep. 2021 Jul 6;11(1):13917. doi: 10.1038/s41598-021-93130-x.
8
Biomechanical Characterization of Endothelial Cells Exposed to Shear Stress Using Acoustic Force Spectroscopy.
Front Bioeng Biotechnol. 2021 Feb 4;9:612151. doi: 10.3389/fbioe.2021.612151. eCollection 2021.
9
An Acoustic Platform for Single-Cell, High-Throughput Measurements of the Viscoelastic Properties of Cells.
Small. 2021 Jan;17(3):e2005759. doi: 10.1002/smll.202005759. Epub 2020 Dec 16.
10
Dynamic actin cross-linking governs the cytoplasm's transition to fluid-like behavior.
Mol Biol Cell. 2020 Jul 21;31(16):1744-1752. doi: 10.1091/mbc.E19-09-0504. Epub 2020 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验