Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Commun Biol. 2024 Jun 4;7(1):683. doi: 10.1038/s42003-024-06367-3.
In the context of soft matter and cellular mechanics, microrheology - the use of micron-sized particles to probe the frequency-dependent viscoelastic response of materials - is widely used to shed light onto the mechanics and dynamics of molecular structures. Here we present the implementation of active microrheology in an Acoustic Force Spectroscopy setup (AFMR), which combines multiplexing with the possibility of probing a wide range of forces ( ~ pN to ~nN) and frequencies (0.01-100 Hz). To demonstrate the potential of this approach, we perform active microrheology on biological samples of increasing complexity and stiffness: collagen gels, red blood cells (RBCs), and human fibroblasts, spanning a viscoelastic modulus range of five orders of magnitude. We show that AFMR can successfully quantify viscoelastic properties by probing many beads with high single-particle precision and reproducibility. Finally, we demonstrate that AFMR to map local sample heterogeneities as well as detect cellular responses to drugs.
在软物质和细胞力学的背景下,微流变学——使用微米级颗粒来探测材料的频率相关粘弹性响应——被广泛用于揭示分子结构的力学和动力学。在这里,我们在声力光谱(AFMR)设置中实现了主动微流变学,该设置结合了多路复用以及探测广泛范围的力(pN 至nN)和频率(0.01-100Hz)的可能性。为了展示这种方法的潜力,我们对具有不同复杂度和刚度的生物样本进行了主动微流变学研究:胶原蛋白凝胶、红细胞(RBC)和人成纤维细胞,其粘弹性模量范围跨越五个数量级。我们表明,AFMR 可以通过用高单颗粒精度和可重复性探测许多颗粒来成功地量化粘弹性性质。最后,我们证明了 AFMR 可以绘制局部样品异质性以及检测细胞对药物的反应。