Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico.
Anticancer Agents Med Chem. 2024;24(15):1109-1125. doi: 10.2174/0118715206299644240523054454.
Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site.
Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called "self-docking or re-docking" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest.
In this study, several molecular docking studies were conducted using five X-ray structures of HDAC8-ligand complexes from the PDB.
Ligands initially complexed with HDAC8 were removed and re-docked onto the free protein, revealing a poor reproduction of the expected binding mode. In response to this, we observed that most HDAC8-ligand complexes contained one to two water molecules in the catalytic site, which were crucial for maintaining the cocrystallized ligand.
These water molecules enhance the binding mode of the co-crystallized ligand by stabilizing the proteinligand complex through hydrogen bond interactions between ligand and water molecules. Notably, these interactions are lost if water molecules are removed, as is often done in classical docking methodologies. Considering this, molecular docking simulations were repeated, both with and without one or two conserved water molecules near Zn in the catalytic cavity. Simulations indicated that replicating the native binding pose of co-crystallized ligands on free HDAC8 without these water molecules was challenging, showing greater coordinate displacements (RMSD) compared to those including conserved water molecules from crystals.
The study highlighted the importance of conserved water molecules within the active site, as their presence significantly influenced the successful reproduction of the ligands' native binding modes. The results suggest an optimal molecular docking procedure for validating methods suitable for filtering new HDAC8 inhibitors for future experimental assays.
验证对接程序并保持 HDAC8 催化部位的结构水分子。
分子对接模拟在计算机辅助药物设计中起着重要作用,有助于开发新的分子。为了确保这些模拟的可靠性,采用了一种称为“自对接或重新对接”的验证过程,重点关注与感兴趣的蛋白质结合的配体的结合模式。
本研究使用来自 PDB 的 5 个 HDAC8-配体复合物的 X 射线结构进行了多次分子对接研究。
最初与 HDAC8 复合的配体被移除并重新对接在游离蛋白上,结果显示预期的结合模式再现效果不佳。对此,我们观察到大多数 HDAC8-配体复合物在催化部位含有一个到两个水分子,这些水分子对于维持共结晶配体至关重要。
这些水分子通过配体和水分子之间的氢键相互作用稳定蛋白质-配体复合物,从而增强共结晶配体的结合模式。值得注意的是,如果去除水分子,就像在经典对接方法中经常做的那样,这些相互作用就会丢失。考虑到这一点,重复了分子对接模拟,既有保留催化腔中 Zn 附近一个或两个保守水分子的模拟,也有去除这些水分子的模拟。模拟表明,在没有这些水分子的情况下,复制共结晶配体在游离 HDAC8 上的天然结合构象具有挑战性,与包含晶体中保守水分子的模拟相比,显示出更大的坐标位移(RMSD)。
该研究强调了活性部位内保守水分子的重要性,因为它们的存在显著影响了配体天然结合模式的成功再现。结果表明,对于未来的实验测定,需要一种优化的分子对接程序来验证适合筛选新的 HDAC8 抑制剂的方法。