Suppr超能文献

基于结构的深度融合推理提高蛋白-配体结合亲和力预测。

Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.

机构信息

Global Security Computing Applications Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.

出版信息

J Chem Inf Model. 2021 Apr 26;61(4):1583-1592. doi: 10.1021/acs.jcim.0c01306. Epub 2021 Mar 23.

Abstract

Predicting accurate protein-ligand binding affinities is an important task in drug discovery but remains a challenge even with computationally expensive biophysics-based energy scoring methods and state-of-the-art deep learning approaches. Despite the recent advances in the application of deep convolutional and graph neural network-based approaches, it remains unclear what the relative advantages of each approach are and how they compare with physics-based methodologies that have found more mainstream success in virtual screening pipelines. We present fusion models that combine features and inference from complementary representations to improve binding affinity prediction. This, to our knowledge, is the first comprehensive study that uses a common series of evaluations to directly compare the performance of three-dimensional (3D)-convolutional neural networks (3D-CNNs), spatial graph neural networks (SG-CNNs), and their fusion. We use temporal and structure-based splits to assess performance on novel protein targets. To test the practical applicability of our models, we examine their performance in cases that assume that the crystal structure is not available. In these cases, binding free energies are predicted using docking pose coordinates as the inputs to each model. In addition, we compare these deep learning approaches to predictions based on docking scores and molecular mechanic/generalized Born surface area (MM/GBSA) calculations. Our results show that the fusion models make more accurate predictions than their constituent neural network models as well as docking scoring and MM/GBSA rescoring, with the benefit of greater computational efficiency than the MM/GBSA method. Finally, we provide the code to reproduce our results and the parameter files of the trained models used in this work. The software is available as open source at https://github.com/llnl/fast. Model parameter files are available at ftp://gdo-bioinformatics.ucllnl.org/fast/pdbbind2016_model_checkpoints/.

摘要

准确预测蛋白质-配体结合亲和力是药物发现中的一项重要任务,但即使使用计算成本高昂的基于生物物理的能量评分方法和最先进的深度学习方法,这仍然是一个挑战。尽管最近在应用基于深度卷积和图神经网络的方法方面取得了进展,但仍不清楚每种方法的相对优势是什么,以及它们与在虚拟筛选管道中取得更主流成功的基于物理的方法相比如何。我们提出了融合模型,该模型结合了来自互补表示的特征和推理,以提高结合亲和力预测。据我们所知,这是第一项使用通用系列评估来直接比较三维(3D)卷积神经网络(3D-CNN)、空间图神经网络(SG-CNN)及其融合性能的综合研究。我们使用时间和基于结构的拆分来评估对新蛋白质靶标的性能。为了测试我们模型的实际适用性,我们在假设晶体结构不可用的情况下检查它们的性能。在这些情况下,使用对接构象坐标作为每个模型的输入来预测结合自由能。此外,我们将这些深度学习方法与基于对接评分和分子力学/广义 Born 表面面积(MM/GBSA)计算的预测进行了比较。我们的结果表明,融合模型比其组成的神经网络模型以及对接评分和 MM/GBSA 重新评分做出更准确的预测,并且比 MM/GBSA 方法具有更高的计算效率优势。最后,我们提供了重现我们结果的代码以及在这项工作中使用的训练模型的参数文件。该软件可在 https://github.com/llnl/fast 上作为开源获取。模型参数文件可在 ftp://gdo-bioinformatics.ucllnl.org/fast/pdbbind2016_model_checkpoints/ 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验