Son Florencia A, Bailey Owen J, Islamoglu Timur, Farha Omar K
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.
Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.
ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31798-31806. doi: 10.1021/acsami.4c04569. Epub 2024 Jun 4.
Surface barriers are commonly observed in nanoporous materials. Although researchers have explored methods to repair defects or create flawless crystals to mitigate surface barriers, these approaches may not always be practical or readily achievable in targeted metal-organic frameworks (MOFs). In our study, we propose an alternative approach focusing on the introduction of diverse ligands onto a MOF-808 node to finely adjust its adsorption and mass transport characteristics. Significantly, our findings indicate that while adsorption curves can be inferred based on the MOF's chemical composition and the probing molecule, surface permeabilities exhibit variations dependent on the specific probe utilized and the incorporated ligand. Our investigation, considering van der Waals forces exclusively between the adsorbate (e.g., -hexane, propane, and benzene) and the adsorbent, revealed that augmenting these interactions can indeed improve surface permeation to a certain extent. Conversely, strong adsorption resulting from hydrogen bonding interactions, particularly with water in modified MOFs, led to compromised permeation within the MOF crystals. These outcomes provide valuable insights for the porous materials community and offer guidance in the development of adsorbents with enhanced affinity and superior mass transport properties for gases and vapors.
表面屏障在纳米多孔材料中普遍存在。尽管研究人员已经探索了修复缺陷或制备完美晶体以减轻表面屏障的方法,但在目标金属有机框架(MOF)中,这些方法可能并不总是实用或易于实现的。在我们的研究中,我们提出了一种替代方法,重点是在MOF-808节点上引入多种配体,以精细调节其吸附和传质特性。值得注意的是,我们的研究结果表明,虽然吸附曲线可以根据MOF的化学成分和探测分子推断出来,但表面渗透率会因所使用的特定探针和掺入的配体而有所不同。我们的研究仅考虑吸附质(如己烷、丙烷和苯)与吸附剂之间的范德华力,结果表明增强这些相互作用确实可以在一定程度上改善表面渗透。相反,氢键相互作用导致的强吸附,特别是在改性MOF中与水的相互作用,会导致MOF晶体内的渗透率降低。这些结果为多孔材料领域提供了有价值的见解,并为开发对气体和蒸汽具有增强亲和力和卓越传质性能的吸附剂提供了指导。