Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad-826004, India.
Phys Chem Chem Phys. 2024 Jun 19;26(24):17011-17027. doi: 10.1039/d4cp01620c.
, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein. Despite extensive efforts, competitive inhibitors targeting the tight (T) protomer of the MexB protein have not received FDA approval for medical use. Over the past few years, allosteric inhibitors have become popular as alternatives to the classical competitive inhibitor-based approach because of their higher specificity, lower dosage, and reduced toxicological effects. Hence, in this study, we unveiled the existence of a transmembrane allosteric binding pocket of MexB inspired by the recent discovery of an important allosteric inhibitor, BDM88855, for the homolog AcrB protein. While repurposing BDM88855 proved ineffective in controlling the MexB loose (L) protomer, our investigation identified a promising alternative: a chlorine-containing variant of DB08385 (2-Cl DB08385 or Variant 1). Molecular dynamics simulations, including binding free energy estimation coupled with heterogeneous dielectric implicit membrane model (implicit-membrane MM/PBSA), interaction entropy (IE) analysis and potential of mean force (PMF) calculation, demonstrated Variant 1's superior binding affinity to the transmembrane pocket, displaying the highest energy barrier in the ligand unbinding process. To elucidate the allosteric crosstalk between the transmembrane and porter domain of MexB, we employed the 'eigenvector centrality' measure in the linear mutual information obtained from the protein correlation network. Notably, this study confirmed the presence of an allosteric transmembrane site in the MexB L protomer. In addition to this, Variant 1 emerged as a potent regulator of allosteric crosstalk, inducing an 'O-L intermediate state' in the MexB L protomer. This induced state might hold the potential to diminish substrate intake into the access pocket, leading to the ineffective efflux of antibiotics.
铜绿假单胞菌是一种强大的病原体,具有抗微生物的耐药性,对免疫功能低下的个体构成重大威胁。在这方面,MexAB-OprM 外排泵作为一种关键的防御线,通过将抗生素从细菌细胞中排出。内膜同源三聚体蛋白 MexB 捕获抗生素,并将它们转运到通过 MexA 接头蛋白连接的外膜 OprM 通道蛋白中。尽管进行了广泛的努力,但针对 MexB 蛋白紧密(T)单体的竞争性抑制剂尚未获得 FDA 批准用于医疗用途。在过去的几年中,变构抑制剂已成为替代经典竞争性抑制剂方法的热门选择,因为它们具有更高的特异性、更低的剂量和减少的毒理学作用。因此,在这项研究中,我们根据最近发现的重要变构抑制剂 BDM88855 对同源 AcrB 蛋白的研究,揭示了 MexB 跨膜变构结合口袋的存在。虽然重新利用 BDM88855 证明在控制 MexB 松散(L)单体方面无效,但我们的研究发现了一种有前途的替代品:DB08385 的含氯变体(2-Cl DB08385 或变体 1)。分子动力学模拟,包括结合自由能估计与非均匀介电隐式膜模型(隐式膜 MM/PBSA)、相互作用熵(IE)分析和平均力势(PMF)计算相结合,表明变体 1 对跨膜口袋具有更高的结合亲和力,在配体解吸过程中显示出最高的能量障碍。为了阐明 MexB 跨膜和 porter 结构域之间的变构串扰,我们在从蛋白质相关网络获得的线性互信息中使用了“特征向量中心性”度量。值得注意的是,这项研究证实了 MexB L 单体中存在变构跨膜位点。除此之外,变体 1 作为变构串扰的有效调节剂出现,在 MexB L 单体中诱导“O-L 中间状态”。这种诱导状态可能具有减少底物进入进入口袋的潜力,从而导致抗生素的无效外排。