文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MexB 外排泵的回避和抑制的分子决定因素。

Molecular determinants of avoidance and inhibition of MexB efflux pump.

机构信息

Department of Physics, University of Cagliari , Monserrato, Italy.

Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma, USA.

出版信息

mBio. 2023 Aug 31;14(4):e0140323. doi: 10.1128/mbio.01403-23. Epub 2023 Jul 26.


DOI:10.1128/mbio.01403-23
PMID:37493633
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10470492/
Abstract

Transporters of the resistance-nodulation-cell division (RND) superfamily of proteins are the dominant multidrug efflux power of Gram-negative bacteria. The major RND efflux pump of is MexAB-OprM, in which the inner membrane transporter MexB is responsible for the recognition and binding of compounds. The high importance of this pump in clinical antibiotic resistance made it a subject of intense investigations and a promising target for the discovery of efflux pump inhibitors. This study is focused on a series of peptidomimetic compounds developed as effective inhibitors of MexAB-OprM. We performed multi-copy molecular dynamics simulations, machine-learning (ML) analyses, and site-directed mutagenesis of MexB to investigate interactions of MexB with representatives of efflux avoiders, substrates, and inhibitors. The analysis of both direct and water-mediated protein-ligand interactions revealed characteristic patterns for each class, highlighting significant differences between them. We found that efflux avoiders poorly interact with the access binding site of MexB, and inhibition engages amino acid residues that are not directly involved in binding and transport of substrates. In agreement, machine-learning models selected different residues predictive of MexB substrates and inhibitors. The differences in interactions were further validated by site-directed mutagenesis. We conclude that the substrate translocation and inhibition pathways of MexB split at the interface (between the main putative binding sites) and at the deep binding pocket and that interactions outside of the hydrophobic patch contribute to the inhibition of MexB. This molecular-level information could help in the rational design of new inhibitors and antibiotics less susceptible to the efflux mechanism. IMPORTANCE Multidrug transporters recognize and expel from cells a broad range of ligands including their own inhibitors. The difference between the substrate translocation and inhibition routes remains unclear. In this study, machine learning and computational and experimental approaches were used to understand dynamics of MexB interactions with its ligands. Our results show that some ligands engage a certain combination of polar and charged residues in MexB binding sites to be effectively expelled into the exit funnel, whereas others engage aromatic and hydrophobic residues that slow down or hinder the next step in the transporter cycle. These findings suggest that all MexB ligands fit into this substrate-inhibitor spectrum depending on their physico-chemical structures and properties.

摘要

RND 家族蛋白转运体是革兰氏阴性菌主要的多药外排动力。 是 MexAB-OprM 的主要 RND 外排泵,其中内膜转运蛋白 MexB 负责化合物的识别和结合。 该泵在临床抗生素耐药性中的重要性使其成为深入研究的主题,也是发现外排泵抑制剂的有前途的目标。 本研究集中于一系列作为 MexAB-OprM 有效抑制剂开发的肽拟态化合物。 我们进行了多拷贝分子动力学模拟、机器学习 (ML) 分析和 MexB 的定点突变,以研究 MexB 与外排回避物、底物和抑制剂代表物的相互作用。 直接和水介导的蛋白质-配体相互作用的分析揭示了每一类的特征模式,突出了它们之间的显著差异。 我们发现外排回避物与 MexB 的进入结合位点相互作用很差,并且抑制作用涉及不直接参与底物结合和转运的氨基酸残基。 一致地,机器学习模型选择了不同的残基来预测 MexB 的底物和抑制剂。 突变研究进一步验证了相互作用的差异。 我们得出的结论是,MexB 的底物转运和抑制途径在界面(在主要假定的结合位点之间)和深部结合口袋处分离,并且疏水性斑块之外的相互作用有助于 MexB 的抑制。 这种分子水平的信息可以帮助合理设计不易受外排机制影响的新抑制剂和抗生素。 重要性 多药转运体识别并将包括其自身抑制剂在内的广泛配体从细胞中排出。 底物转运和抑制途径之间的差异尚不清楚。 在这项研究中,使用机器学习和计算及实验方法来理解 MexB 与配体相互作用的动力学。 我们的结果表明,一些配体与 MexB 结合位点中的某些极性和带电残基结合,以有效地被排出到出口漏斗中,而其他配体则与芳香族和疏水性残基结合,从而减慢或阻碍转运体循环的下一步。 这些发现表明,所有 MexB 配体都根据其物理化学结构和性质适合于这个底物-抑制剂谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/0e2f3ffcb794/mbio.01403-23.f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/40f361013d22/mbio.01403-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/6e24179cfa70/mbio.01403-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/78650f8a3d42/mbio.01403-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/92c950f4717d/mbio.01403-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/e922358762a3/mbio.01403-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/06415af5d3ac/mbio.01403-23.f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/0e2f3ffcb794/mbio.01403-23.f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/40f361013d22/mbio.01403-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/6e24179cfa70/mbio.01403-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/78650f8a3d42/mbio.01403-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/92c950f4717d/mbio.01403-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/e922358762a3/mbio.01403-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/06415af5d3ac/mbio.01403-23.f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c6/10470492/0e2f3ffcb794/mbio.01403-23.f007.jpg

相似文献

[1]
Molecular determinants of avoidance and inhibition of MexB efflux pump.

mBio. 2023-8-31

[2]
Predictive Rules of Efflux Inhibition and Avoidance in Pseudomonas aeruginosa.

mBio. 2021-1-19

[3]
Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa.

J Bacteriol. 2004-3

[4]
Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR.

Arch Iran Med. 2015-2

[5]
Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa.

BMC Complement Altern Med. 2017-8-14

[6]
Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation.

PLoS One. 2014-7-15

[7]
Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria.

J Bacteriol. 2002-12

[8]
RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication.

BMC Microbiol. 2012-5-10

[9]
Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of .

Phys Chem Chem Phys. 2022-7-13

[10]
Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors.

J Bacteriol. 2007-9

引用本文的文献

[1]
Mutations in the proximal binding site and F-loop of AdeJ confer resistance to efflux pump inhibitors.

Antimicrob Agents Chemother. 2025-8-6

[2]
Evaluating the Link between Efflux Pump Expression and Motility Phenotypes in Treated with Virulence Inhibitors.

ACS Infect Dis. 2025-8-8

[3]
Multidrug resistance in Pseudomonas aeruginosa: genetic control mechanisms and therapeutic advances.

Mol Biomed. 2024-11-27

[4]
Advances in methods and concepts provide new insight into antibiotic fluxes across the bacterial membrane.

Commun Biol. 2024-11-14

[5]
Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance.

Microbiol Mol Biol Rev. 2024-9-26

[6]
Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors.

Commun Chem. 2024-4-12

本文引用的文献

[1]
A framework for dissecting affinities of multidrug efflux transporter AcrB to fluoroquinolones.

Commun Biol. 2022-10-6

[2]
Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview.

Antibiotics (Basel). 2022-4-13

[3]
AB-DB: Force-Field parameters, MD trajectories, QM-based data, and Descriptors of Antimicrobials.

Sci Data. 2022-4-1

[4]
Evaluation of efflux pump inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa using nucleic acid dyes.

J Infect Chemother. 2022-5

[5]
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.

Lancet. 2022-2-12

[6]
Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps.

Nat Commun. 2022-1-10

[7]
Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge.

Chem Sci. 2021-10-14

[8]
Absence, loss-of-function, or inhibition of Escherichia coli AcrB does not increase expression of other efflux pump genes supporting the discovery of AcrB inhibitors as antibiotic adjuvants.

J Antimicrob Chemother. 2022-2-23

[9]
Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms.

Nat Commun. 2021-11-25

[10]
Mechanistic Duality of Bacterial Efflux Substrates and Inhibitors: Example of Simple Substituted Cinnamoyl and Naphthyl Amides.

ACS Infect Dis. 2021-9-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索