Department of Physics, University of Cagliari , Monserrato, Italy.
Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma, USA.
mBio. 2023 Aug 31;14(4):e0140323. doi: 10.1128/mbio.01403-23. Epub 2023 Jul 26.
Transporters of the resistance-nodulation-cell division (RND) superfamily of proteins are the dominant multidrug efflux power of Gram-negative bacteria. The major RND efflux pump of is MexAB-OprM, in which the inner membrane transporter MexB is responsible for the recognition and binding of compounds. The high importance of this pump in clinical antibiotic resistance made it a subject of intense investigations and a promising target for the discovery of efflux pump inhibitors. This study is focused on a series of peptidomimetic compounds developed as effective inhibitors of MexAB-OprM. We performed multi-copy molecular dynamics simulations, machine-learning (ML) analyses, and site-directed mutagenesis of MexB to investigate interactions of MexB with representatives of efflux avoiders, substrates, and inhibitors. The analysis of both direct and water-mediated protein-ligand interactions revealed characteristic patterns for each class, highlighting significant differences between them. We found that efflux avoiders poorly interact with the access binding site of MexB, and inhibition engages amino acid residues that are not directly involved in binding and transport of substrates. In agreement, machine-learning models selected different residues predictive of MexB substrates and inhibitors. The differences in interactions were further validated by site-directed mutagenesis. We conclude that the substrate translocation and inhibition pathways of MexB split at the interface (between the main putative binding sites) and at the deep binding pocket and that interactions outside of the hydrophobic patch contribute to the inhibition of MexB. This molecular-level information could help in the rational design of new inhibitors and antibiotics less susceptible to the efflux mechanism. IMPORTANCE Multidrug transporters recognize and expel from cells a broad range of ligands including their own inhibitors. The difference between the substrate translocation and inhibition routes remains unclear. In this study, machine learning and computational and experimental approaches were used to understand dynamics of MexB interactions with its ligands. Our results show that some ligands engage a certain combination of polar and charged residues in MexB binding sites to be effectively expelled into the exit funnel, whereas others engage aromatic and hydrophobic residues that slow down or hinder the next step in the transporter cycle. These findings suggest that all MexB ligands fit into this substrate-inhibitor spectrum depending on their physico-chemical structures and properties.
RND 家族蛋白转运体是革兰氏阴性菌主要的多药外排动力。 是 MexAB-OprM 的主要 RND 外排泵,其中内膜转运蛋白 MexB 负责化合物的识别和结合。 该泵在临床抗生素耐药性中的重要性使其成为深入研究的主题,也是发现外排泵抑制剂的有前途的目标。 本研究集中于一系列作为 MexAB-OprM 有效抑制剂开发的肽拟态化合物。 我们进行了多拷贝分子动力学模拟、机器学习 (ML) 分析和 MexB 的定点突变,以研究 MexB 与外排回避物、底物和抑制剂代表物的相互作用。 直接和水介导的蛋白质-配体相互作用的分析揭示了每一类的特征模式,突出了它们之间的显著差异。 我们发现外排回避物与 MexB 的进入结合位点相互作用很差,并且抑制作用涉及不直接参与底物结合和转运的氨基酸残基。 一致地,机器学习模型选择了不同的残基来预测 MexB 的底物和抑制剂。 突变研究进一步验证了相互作用的差异。 我们得出的结论是,MexB 的底物转运和抑制途径在界面(在主要假定的结合位点之间)和深部结合口袋处分离,并且疏水性斑块之外的相互作用有助于 MexB 的抑制。 这种分子水平的信息可以帮助合理设计不易受外排机制影响的新抑制剂和抗生素。 重要性 多药转运体识别并将包括其自身抑制剂在内的广泛配体从细胞中排出。 底物转运和抑制途径之间的差异尚不清楚。 在这项研究中,使用机器学习和计算及实验方法来理解 MexB 与配体相互作用的动力学。 我们的结果表明,一些配体与 MexB 结合位点中的某些极性和带电残基结合,以有效地被排出到出口漏斗中,而其他配体则与芳香族和疏水性残基结合,从而减慢或阻碍转运体循环的下一步。 这些发现表明,所有 MexB 配体都根据其物理化学结构和性质适合于这个底物-抑制剂谱。
BMC Complement Altern Med. 2017-8-14
Phys Chem Chem Phys. 2022-7-13
Antimicrob Agents Chemother. 2025-8-6
Antibiotics (Basel). 2022-4-13
Nat Commun. 2022-1-10