Zaier Rania, Bancerek Maria, Kluczyk-Korch Katarzyna, Antosiewicz Tomasz J
Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland.
Nanoscale. 2024 Jun 27;16(25):12163-12173. doi: 10.1039/d4nr01198h.
Strong coupling between metal nanoparticles and molecules mixes their excitations, creating new eigenstates with modified properties such as altered chemical reactivity, different relaxation pathways or modified phase transitions. Here, we explore excited state plasmon-molecule coupling and discuss how strong coupling together with a changed orientation and number of an asymmetric molecule affects the generation of hot carriers in the system. We used a promising plasmonic material, magnesium, for the nanoparticle and coupled it with CPDT molecules, which are used in organic optoelectronic materials for organic electronic applications due to their facile modification, electron-rich structure, low band gap, high electrical conductivity and good charge transport properties. By employing computational quantum electronic tools we demonstrate the existence of a strong coupling mediated charge transfer plasmon whose direction, magnitude, and spectral position can be tuned. We find that the orientation of CPDT changes the nanoparticle-molecule gap for which maximum charge separation occurs, while larger gaps result in trapping hot carriers within the moieties due to weaker interactions. This research highlights the potential for tuning hot carrier generation in strongly coupled plasmon-molecule systems for enhanced energy generation or excited state chemistry.
金属纳米颗粒与分子之间的强耦合会混合它们的激发态,产生具有改变性质的新本征态,如改变的化学反应性、不同的弛豫途径或改变的相变。在这里,我们探索激发态等离子体-分子耦合,并讨论强耦合以及不对称分子的取向和数量变化如何影响系统中热载流子的产生。我们使用了一种很有前景的等离子体材料——镁作为纳米颗粒,并将其与CPDT分子耦合,CPDT分子因其易于修饰、富电子结构、低带隙、高电导率和良好的电荷传输特性而被用于有机光电子材料的有机电子应用中。通过使用计算量子电子工具,我们证明了存在一种强耦合介导的电荷转移等离子体,其方向、大小和光谱位置可以被调节。我们发现CPDT的取向改变了发生最大电荷分离的纳米颗粒-分子间隙,而较大的间隙由于相互作用较弱导致热载流子被困在各部分内。这项研究突出了在强耦合等离子体-分子系统中调节热载流子产生以增强能量产生或激发态化学的潜力。