Suppr超能文献

MPASL:用于人类癌症合成致死预测的多视角学习知识图谱注意力网络

MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.

作者信息

Zhang Ge, Chen Yitong, Yan Chaokun, Wang Jianlin, Liang Wenjuan, Luo Junwei, Luo Huimin

机构信息

School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.

Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, Henan, China.

出版信息

Front Pharmacol. 2024 May 21;15:1398231. doi: 10.3389/fphar.2024.1398231. eCollection 2024.

Abstract

Synthetic lethality (SL) is widely used to discover the anti-cancer drug targets. However, the identification of SL interactions through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for SL interactions prediction is of great significance. In this study, we propose MPASL, a multi-perspective learning knowledge graph attention network to enhance synthetic lethality prediction. MPASL utilizes knowledge graph hierarchy propagation to explore multi-source neighbor nodes related to genes. The knowledge graph ripple propagation expands gene representations through existing gene SL preference sets. MPASL can learn the gene representations from both gene-entity perspective and entity-entity perspective. Specifically, based on the aggregation method, we learn to obtain gene-oriented entity embeddings. Then, the gene representations are refined by comparing the various layer-wise neighborhood features of entities using the discrepancy contrastive technique. Finally, the learned gene representation is applied in SL prediction. Experimental results demonstrated that MPASL outperforms several state-of-the-art methods. Additionally, case studies have validated the effectiveness of MPASL in identifying SL interactions between genes.

摘要

合成致死(SL)被广泛用于发现抗癌药物靶点。然而,通过湿实验鉴定SL相互作用成本高且效率低。因此,开发高效、高精度的计算方法来预测SL相互作用具有重要意义。在本研究中,我们提出了MPASL,一种多视角学习知识图谱注意力网络,以增强合成致死预测。MPASL利用知识图谱层次传播来探索与基因相关的多源邻居节点。知识图谱涟漪传播通过现有的基因SL偏好集扩展基因表示。MPASL可以从基因-实体视角和实体-实体视角学习基因表示。具体来说,基于聚合方法,我们学习获得面向基因的实体嵌入。然后,使用差异对比技术通过比较实体的各层邻域特征来细化基因表示。最后,将学习到的基因表示应用于SL预测。实验结果表明,MPASL优于几种现有最先进的方法。此外,案例研究验证了MPASL在识别基因间SL相互作用方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c8/11148462/a81bb6a4b335/fphar-15-1398231-g001.jpg

相似文献

1
MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.
Front Pharmacol. 2024 May 21;15:1398231. doi: 10.3389/fphar.2024.1398231. eCollection 2024.
2
PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
Bioinformatics. 2022 Sep 16;38(Suppl_2):ii106-ii112. doi: 10.1093/bioinformatics/btac476.
3
Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
Front Genet. 2023 Jan 9;13:1103092. doi: 10.3389/fgene.2022.1103092. eCollection 2022.
4
Graph contextualized attention network for predicting synthetic lethality in human cancers.
Bioinformatics. 2021 Aug 25;37(16):2432-2440. doi: 10.1093/bioinformatics/btab110.
5
MAGCN: A Multiple Attention Graph Convolution Networks for Predicting Synthetic Lethality.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2681-2689. doi: 10.1109/TCBB.2022.3221736. Epub 2023 Oct 9.
7
Graph based recurrent network for context specific synthetic lethality prediction.
Sci China Life Sci. 2025 Feb;68(2):527-540. doi: 10.1007/s11427-023-2618-y. Epub 2024 Oct 12.
8
Prediction of Synthetic Lethal Interactions in Human Cancers Using Multi-View Graph Auto-Encoder.
IEEE J Biomed Health Inform. 2021 Oct;25(10):4041-4051. doi: 10.1109/JBHI.2021.3079302. Epub 2021 Oct 5.
9
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i418-i425. doi: 10.1093/bioinformatics/btab271.
10
NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
Bioinformatics. 2022 Sep 16;38(Suppl_2):ii13-ii19. doi: 10.1093/bioinformatics/btac462.

引用本文的文献

本文引用的文献

1
KGANSynergy: knowledge graph attention network for drug synergy prediction.
Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad167.
4
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i418-i425. doi: 10.1093/bioinformatics/btab271.
5
Prediction of Synthetic Lethal Interactions in Human Cancers Using Multi-View Graph Auto-Encoder.
IEEE J Biomed Health Inform. 2021 Oct;25(10):4041-4051. doi: 10.1109/JBHI.2021.3079302. Epub 2021 Oct 5.
6
Graph contextualized attention network for predicting synthetic lethality in human cancers.
Bioinformatics. 2021 Aug 25;37(16):2432-2440. doi: 10.1093/bioinformatics/btab110.
7
Integrated TCGA and GEO analysis showed that SMAD7 is an independent prognostic factor for lung adenocarcinoma.
Medicine (Baltimore). 2020 Oct 30;99(44):e22861. doi: 10.1097/MD.0000000000022861.
8
Predicting drug-disease associations through layer attention graph convolutional network.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa243.
9
frDriver: A Functional Region Driver Identification for Protein Sequence.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1773-1783. doi: 10.1109/TCBB.2020.3020096. Epub 2021 Oct 7.
10
Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
Bioinformatics. 2020 Aug 15;36(16):4458-4465. doi: 10.1093/bioinformatics/btaa211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验