Suppr超能文献

通过层注意图卷积网络预测药物-疾病关联。

Predicting drug-disease associations through layer attention graph convolutional network.

机构信息

College of Informatics, Huazhong Agricultural University.

University of Washington.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa243.

Abstract

BACKGROUND

Determining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug-disease associations is of great significance.

RESULTS

In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug-disease association prediction. Specifically, LAGCN first integrates the known drug-disease associations, drug-drug similarities and disease-disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug-disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision-recall curve of 0.3168 and an area under the receiver-operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.

CONCLUSION

LAGCN is a useful tool for predicting drug-disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.

摘要

背景

确定药物-疾病关联是药物开发过程中的一个重要组成部分。然而,通过湿实验来识别药物-疾病关联是昂贵且低效的。因此,开发高效、高精度的计算方法来预测药物-疾病关联具有重要意义。

结果

在本文中,我们提出了一种名为层注意力图卷积网络(LAGCN)的新的计算方法,用于药物-疾病关联预测。具体来说,LAGCN 首先将已知的药物-疾病关联、药物-药物相似性和疾病-疾病相似性整合到一个异构网络中,并对网络应用图卷积操作,以学习药物和疾病的嵌入。其次,LAGCN 使用注意力机制将来自多个图卷积层的嵌入进行组合。第三,基于整合的嵌入对未观察到的药物-疾病关联进行评分。通过 5 折交叉验证评估,LAGCN 在精度-召回曲线下的面积为 0.3168,在接收者操作特征曲线下的面积为 0.8750,优于现有最先进的预测方法和基线方法的结果。案例研究表明,LAGCN 可以发现我们数据集中未被注释的新关联。

结论

LAGCN 是一种用于预测药物-疾病关联的有用工具。本研究表明,来自不同卷积层的嵌入可以反映不同阶的接近程度,通过注意力机制组合嵌入可以提高预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验