Mathematics, Universitas Airlangga, Surabaya, Surabaya, 68121, Indonesia.
Elementary School Teacher Education, Universitas Jember, Jember, East Java, 68121, Indonesia.
F1000Res. 2024 Apr 23;12:95. doi: 10.12688/f1000research.128866.2. eCollection 2023.
: One of the topics of distance in graphs is the resolving set problem. Suppose the set = { , , …, } ⊂ ( ), the vertex representations of ∈ ( ) is ( | ) = { ( , ), ( , ), …, ( , )}, where ( , ) is the length of the shortest path of the vertex and the vertex in together with their multiplicity. The set is called a local -resolving set of graphs if ( | )≠ ( | ) for ∈ ( ). The local -resolving set having minimum cardinality is called the local multiset basis and its cardinality is called the local multiset dimension of , denoted by ( ). Thus, if has an infinite local multiset dimension and then we write . : This research is pure research with exploration design. There are several stages in this research, namely we choose the special graph which is operated by amalgamation and the set of vertices and edges of amalgamation of graphs; determine the set ⊂ ( ); determine the vertex representation of two adjacent vertices in ; and prove the theorem. : The results of this research are an upper bound of local multiset dimension of the amalgamation of graphs namely ( ( , , )) ≤ ( ) and their exact value of local multiset dimension of some families of graphs namely ( ( , , )) = 1, , ( ( , , )) = ( ), ( ( , , )) = ( ) for ( ) = , . : We have found the upper bound of a local multiset dimension. There are some graphs which attain the upper bound of local multiset dimension namely wheel graphs.
图的距离的一个主题是分辨集问题。假设集合 = {, , …, } ⊂ ( ), ∈ ( )的顶点表示为 ( | ) = { (, ), (, ), …, (, )},其中 (, )是顶点 和 之间最短路径的长度以及它们的多重性。如果对于 ∈ ( ),有 ( | )≠ ( | ),则集合 称为图 的局部分辨集。具有最小基数的局部分辨集称为局部多重集基,其基数称为图 的局部多重集维数,记为 ( )。因此,如果 具有无限的局部多重集维数,那么我们记为 。
这项研究是纯粹的探索性设计研究。这个研究有几个阶段,即我们选择了特殊的图进行合并操作以及图的合并的顶点和边集;确定集合 ⊂ ( );确定相邻顶点在 中的顶点表示;并证明定理。
这项研究的结果是图的合并的局部多重集维数的上界,即 ( (,, )) ≤ ( ),以及一些图类的局部多重集维数的精确值,即 ( (,, )) = 1,, ( (,, )) = ( ), ( (,, )) = ( ),其中 ( ) =, 。
我们找到了局部多重集维数的上界。有一些图达到了局部多重集维数的上界,即轮图。