Suppr超能文献

利用数据科学工具揭示和理解环辛烯开环易位聚合反应中抑制剂结构的微妙关系。

Using Data Science Tools to Reveal and Understand Subtle Relationships of Inhibitor Structure in Frontal Ring-Opening Metathesis Polymerization.

作者信息

McFadden Timothy P, Cope Reid B, Muhlestein Rachel, Layton Dustin J, Lessard Jacob J, Moore Jeffrey S, Sigman Matthew S

机构信息

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.

Beckman Institute for Advanced Science and Technology, Departments of Chemistry and Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Am Chem Soc. 2024 Jun 5. doi: 10.1021/jacs.4c04622.

Abstract

The rate of frontal ring-opening metathesis polymerization (FROMP) using the Grubbs generation II catalyst is impacted by both the concentration and choice of monomers and inhibitors, usually organophosphorus derivatives. Herein we report a data-science-driven workflow to evaluate how these factors impact both the rate of FROMP and how long the formulation of the mixture is stable (pot life). Using this workflow, we built a classification model using a single-node decision tree to determine how a simple phosphine structural descriptor () can bin long versus short pot life. Additionally, we applied a nonlinear kernel ridge regression model to predict how the inhibitor and selection/concentration of comonomers impact the FROMP rate. The analysis provides selection criteria for material network structures that span from highly cross-linked thermosets to non-cross-linked thermoplastics as well as degradable and nondegradable materials.

摘要

使用第二代格拉布催化剂的前线开环易位聚合反应(FROMP)的速率受到单体和抑制剂(通常是有机磷衍生物)的浓度和选择的影响。在此,我们报告一种数据科学驱动的工作流程,以评估这些因素如何影响FROMP的速率以及混合物配方的稳定时间(适用期)。使用此工作流程,我们构建了一个使用单节点决策树的分类模型,以确定一个简单的膦结构描述符如何区分长适用期和短适用期。此外,我们应用了非线性核岭回归模型来预测抑制剂以及共聚单体的选择/浓度如何影响FROMP速率。该分析为从高度交联的热固性材料到非交联的热塑性材料以及可降解和不可降解材料的材料网络结构提供了选择标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验