Venkatraman Ravi Kumar, Tolba Amal Hassan, Sølling Theis I, Cibulka Radek, El-Zohry Ahmed M
Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
J Phys Chem Lett. 2024 Jun 13;15(23):6202-6208. doi: 10.1021/acs.jpclett.4c01116. Epub 2024 Jun 5.
The usage of rare-earth-metal catalysts in the synthesis of organic compounds is widespread in chemical industries but is limited owing to its environmental and economic costs. However, recent studies indicate that abundant-earth metals like iron(III) chloride can photocatalyze diverse organic transformations using blue-light LEDs. Still, the underlying mechanism behind such activity is debatable and controversial, especially in the absence of ultrafast spectroscopic results. To address this urgent challenge, we performed femtosecond time-resolved electronic absorption spectroscopy experiments of iron(III) chloride in selected organic solvents relevant to its photocatalytic applications. Our results show that the long-lived species [Fe(II) ← Cl]* is primarily responsible for both oxidizing the organic substrate and reducing molecular oxygen through the diffusion process, leading to the final product and regenerating the photocatalyst rather than the most widely proposed free chloride radical (Cl). Our study will guide the rational design of efficient earth-abundant photocatalysts.
稀土金属催化剂在有机化合物合成中的应用在化学工业中广泛存在,但由于其环境和经济成本而受到限制。然而,最近的研究表明,像氯化铁(III)这样的储量丰富的金属可以利用蓝光发光二极管光催化多种有机转化。尽管如此,这种活性背后的潜在机制仍存在争议,尤其是在缺乏超快光谱结果的情况下。为应对这一紧迫挑战,我们对与光催化应用相关的选定有机溶剂中的氯化铁(III)进行了飞秒时间分辨电子吸收光谱实验。我们的结果表明,长寿命物种[Fe(II)←Cl]*主要负责通过扩散过程氧化有机底物和还原分子氧,从而产生最终产物并使光催化剂再生,而不是最广泛提出的游离氯自由基(Cl)。我们的研究将指导高效储量丰富的光催化剂的合理设计。