Akdeniz Burak, Wood Jeffery A, Lammertink Rob G H
Soft Matter, Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
J Phys Chem B. 2024 Jun 20;128(24):5874-5887. doi: 10.1021/acs.jpcb.4c00985. Epub 2024 Jun 5.
Diffusiophoresis is the movement of the colloidal particles in response to a concentration gradient and can be observed for both electrolyte (e.g., salt) and nonelectrolyte (e.g., glucose) solutes. Here, we investigated the diffusiophoretic behavior of polystyrene (PS-carboxylate surface) microparticles in nonadsorbing charged and uncharged solute gradients [sodium polystyrenesulfonate (NaPSS), polyethylene glycol (PEG), and nanoscale colloidal silica (SiO)] using a dead-end channel setup. We compared the diffusiophoretic motion in these gradient types with each other and to the case of using a monovalent salt gradient. In each of the nonadsorbing gradient systems (NaPSS, PEG, and SiO nanoparticles), the PS particles migrated toward the lower solute concentration. The exclusion distance values (from the initial position) of particles were recorded within the dead-end channel, and it was found that an increase in solute concentration increases exclusion from the main channel. In the polyelectrolyte case, the motion of PS microparticles was reduced by the addition of a background salt due to reduced electrostatic interaction, whereas it remained constant when using the neutral polymer. Particle diffusiophoresis in gradients of polyelectrolytes (charged macromolecules) is quite similar to the behavior when using a PEG gradient (uncharged macromolecule) in the presence of a background electrolyte. Moreover, we observed PS microparticles under different concentrations and molecular weights of PEG gradients. By combining the simulations, we estimated the exclusion length, which was previously proposed to be the order of the polymer radius. Furthermore, the movement of PS microparticles was analyzed in the gradient of silica nanoparticles. The exclusion distance was higher in silica nanoparticle gradients compared to similar-size PEG gradients because silica nanoparticles are charged. The diffusiophoretic transport of the PS microparticles could be simulated by considering the interaction between the PS microparticles and silica nanoparticles.
扩散泳是胶体颗粒响应浓度梯度而发生的移动,在电解质(如盐)和非电解质(如葡萄糖)溶质中均可观察到。在此,我们使用死端通道装置研究了聚苯乙烯(羧酸盐表面)微粒在非吸附性带电和不带电溶质梯度[聚苯乙烯磺酸钠(NaPSS)、聚乙二醇(PEG)和纳米级胶体二氧化硅(SiO)]中的扩散泳行为。我们将这些梯度类型中的扩散泳运动相互进行了比较,并与使用单价盐梯度的情况进行了比较。在每个非吸附性梯度系统(NaPSS、PEG和SiO纳米颗粒)中,PS颗粒都向较低溶质浓度方向迁移。在死端通道内记录了颗粒(从初始位置起)的排斥距离值,发现溶质浓度的增加会增加从主通道的排斥。在聚电解质的情况下,由于静电相互作用减弱,添加背景盐会降低PS微粒的运动,而使用中性聚合物时其运动保持不变。聚电解质(带电大分子)梯度中的颗粒扩散泳行为与在背景电解质存在下使用PEG梯度(不带电大分子)时的行为非常相似。此外,我们观察了不同浓度和分子量的PEG梯度下的PS微粒。通过结合模拟,我们估计了排斥长度,此前认为其为聚合物半径的量级。此外,还分析了PS微粒在二氧化硅纳米颗粒梯度中的运动。与类似尺寸的PEG梯度相比,二氧化硅纳米颗粒梯度中的排斥距离更高,因为二氧化硅纳米颗粒带电。考虑PS微粒与二氧化硅纳米颗粒之间的相互作用,可以模拟PS微粒的扩散泳输运。