Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain;
Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25263-25271. doi: 10.1073/pnas.2009072117. Epub 2020 Sep 28.
Glucose is an important energy source in our bodies, and its consumption results in gradients over length scales ranging from the subcellular to entire organs. Concentration gradients can drive material transport through both diffusioosmosis and convection. Convection arises because concentration gradients are mass density gradients. Diffusioosmosis is fluid flow induced by the interaction between a solute and a solid surface. A concentration gradient parallel to a surface creates an osmotic pressure gradient near the surface, resulting in flow. Diffusioosmosis is well understood for electrolyte solutes, but is more poorly characterized for nonelectrolytes such as glucose. We measure fluid flow in glucose gradients formed in a millimeter-long thin channel and find that increasing the gradient causes a crossover from diffusioosmosis-dominated to convection-dominated flow. We cannot explain this with established theories of these phenomena which predict that both scale linearly. In our system, the convection speed is linear in the gradient, but the diffusioosmotic speed has a much weaker concentration dependence and is large even for dilute solutions. We develop existing models and show that a strong surface-solute interaction, a heterogeneous surface, and accounting for a concentration-dependent solution viscosity can explain our data. This demonstrates how sensitive nonelectrolyte diffusioosmosis is to surface and solution properties and to surface-solute interactions. A comprehensive understanding of this sensitivity is required to understand transport in biological systems on length scales from micrometers to millimeters where surfaces are invariably complex and heterogeneous.
葡萄糖是我们体内的重要能量来源,其消耗导致长度尺度从亚细胞到整个器官的浓度梯度。浓度梯度可以通过扩散渗透和对流来驱动物质运输。对流是由于浓度梯度是质量密度梯度。扩散渗透是由溶质和固体表面之间的相互作用引起的流体流动。与表面平行的浓度梯度在表面附近产生渗透压梯度,从而导致流动。对于电解质溶质,扩散渗透已经得到很好的理解,但对于葡萄糖等非电解质的特征描述则较差。我们测量了在毫米长的薄通道中形成的葡萄糖梯度中的流体流动,发现增加梯度会导致从扩散渗透主导到对流主导的流动转变。我们无法用这些现象的已有理论来解释这一点,这些理论预测两者都是线性的。在我们的系统中,对流速度与梯度呈线性关系,但扩散渗透速度对浓度的依赖性要弱得多,即使在稀溶液中也很大。我们开发了现有的模型,并表明强的表面-溶质相互作用、不均匀的表面以及考虑浓度依赖的溶液粘度可以解释我们的数据。这表明非电解质扩散渗透对表面和溶液性质以及表面-溶质相互作用有多么敏感。为了理解从微米到毫米的生物系统中的运输,需要全面了解这种敏感性,因为在这些长度尺度上,表面总是复杂和不均匀的。