Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Mol Biol Cell. 2024 Aug 1;35(8):ar103. doi: 10.1091/mbc.E24-02-0095. Epub 2024 Jun 5.
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells, which can be used in cellular and tissue therapeutics. MSCs cell number can be expanded in vitro, but premature differentiation results in reduced cell number and compromised therapeutic efficacies. Current techniques fail to discriminate the "stem-like" population from early stages (12 h) of differentiated MSC population. Here, we imaged nuclear structure and actin architecture using immunofluorescence and used deep learning-based computer vision technology to discriminate the early stages (6-12 h) of MSC differentiation. Convolutional neural network models trained by nucleus and actin images have high accuracy in reporting MSC differentiation; nuclear images alone can identify early stages of differentiation. Concurrently, we show that chromatin fluidity and heterochromatin levels or localization change during early MSC differentiation. This study quantifies changes in cell architecture during early MSC differentiation and describes a novel image-based diagnostic tool that could be widely used in MSC culture, expansion and utilization.
间充质干细胞(MSCs)是具有自我更新和多向分化潜能的细胞,可用于细胞和组织治疗。MSCs 细胞数量可以在体外扩增,但过早分化会导致细胞数量减少和治疗效果受损。目前的技术无法区分“干细胞样”群体和分化 MSC 群体的早期(12 小时)阶段。在这里,我们使用免疫荧光技术对核结构和肌动蛋白结构进行成像,并使用基于深度学习的计算机视觉技术来区分 MSC 分化的早期(6-12 小时)阶段。使用细胞核和肌动蛋白图像训练的卷积神经网络模型在报告 MSC 分化方面具有很高的准确性;仅使用细胞核图像就可以识别分化的早期阶段。同时,我们表明染色质流动性和异染色质水平或定位在早期 MSC 分化过程中发生变化。这项研究量化了早期 MSC 分化过程中细胞结构的变化,并描述了一种新的基于图像的诊断工具,可广泛用于 MSC 培养、扩增和利用。