Suppr超能文献

基于高速散射干涉显微镜的活细胞核染色质无标记动态成像。

Label-Free Dynamic Imaging of Chromatin in Live Cell Nuclei by High-Speed Scattering-Based Interference Microscopy.

机构信息

Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan.

出版信息

ACS Nano. 2022 Feb 22;16(2):2774-2788. doi: 10.1021/acsnano.1c09748. Epub 2021 Dec 30.

Abstract

Chromatin is a DNA-protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the measured scattering signal. DYNAMICS imaging allows us to reconstruct a speckle-free nucleus map that is highly correlated to the fluorescence chromatin image. Moreover, together with calibration based on nanoparticle colloids, we show that the DYNAMICS signal is sensitive to the chromatin compaction level at the nanoscale. We confirm the effectiveness of DYNAMICS imaging in detecting the condensation and decondensation of chromatin induced by chemical drug treatments. Importantly, the stable scattering signal supports a continuous observation of the chromatin condensation and decondensation processes for more than 1 h. Using this technique, we detect transient and nanoscopic chromatin condensation events occurring on a time scale of a few seconds. Label-free DYNAMICS imaging offers the opportunity to investigate chromatin conformational dynamics and to explore their significance in various gene activities.

摘要

染色质是一种 DNA-蛋白质复合物,在细胞核中紧密堆积。纳米级染色质紧缩在调节细胞核过程中起着关键作用。然而,由于难以定量测量活细胞中的染色质紧缩水平,因此对染色质紧缩状态的时空动力学知之甚少。在这里,我们展示了一种通过分析分子波动的动态散射信号来绘制活细胞核中染色质组织的策略,称为动力学成像。我们实施了高灵敏度的光学干涉显微镜,相干明场(COBRI)显微镜,以高速检测未标记染色质的线性散射。建立了一个理论模型,从测量散射信号的统计波动中确定局部染色质密度。动力学成像使我们能够重建无斑点的核图,该图与荧光染色质图像高度相关。此外,通过基于纳米颗粒胶体的校准,我们表明动力学信号对纳米级染色质紧缩水平敏感。我们证实了动力学成像在检测化学药物处理引起的染色质浓缩和解浓缩的有效性。重要的是,稳定的散射信号支持对染色质浓缩和解浓缩过程进行超过 1 小时的连续观察。使用该技术,我们检测到在几秒钟的时间尺度上发生的瞬时和纳米级染色质浓缩事件。无标记的动力学成像为研究染色质构象动力学提供了机会,并探索了它们在各种基因活性中的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验