Chen Wenmiao, Elumalai Palani, Mamlouk Hind, Rentería-Gómez Ángel, Veeranna Yempally, Shetty Sharan, Kumar Dharmesh, Al-Rawashdeh Ma'moun, Gupta Somil S, Gutierrez Osvaldo, Zhou Hong-Cai, Madrahimov Sherzod T
Division of Arts and Sciences, Texas A&M University at Qatar, Education City, P.O. Box, Doha, 23874, Qatar.
Department of Chemistry, Texas A&M University, College Station, Texas, 77843-3255, USA.
Adv Sci (Weinh). 2024 Aug;11(29):e2309540. doi: 10.1002/advs.202309540. Epub 2024 Jun 4.
Ethylene dimerization is an efficient industrial chemical process to produce 1-butene, with demanding selectivity and activity requirements on new catalytic systems. Herein, a series of monodentate phosphinoamine-nickel complexes immobilized on UiO-66 are described for ethylene dimerization. These catalysts display extensive molecular tunability of the ligand similar to organometallic catalysis, while maintaining the high stability attributed to the metal-organic framework (MOF) scaffold. The highly flexible postsynthetic modification method enables this study to prepare MOFs functionalized with five different substituted phosphines and 3 N-containing ligands and identify the optimal catalyst UiO-66-L5-NiCl with isopropyl substituted nickel mono-phosphinoamine complex. This catalyst shows a remarkable activity and selectivity with a TOF of 29 000 (mol/mol/h) and 99% selectivity for 1-butene under ethylene pressure of 15 bar. The catalyst is also applicable for continuous production in the packed column micro-reactor with a TON of 72 000 (mol/mol). The mechanistic insight for the ethylene oligomerization has been examined by density functional theory (DFT) calculations. The calculated energy profiles for homogeneous complexes and truncated MOF models reveal varying rate-determining step as β-hydrogen elimination and migratory insertion, respectively. The activation barrier of UiO-66-L5-NiCl is lower than other systems, possibly due to the restriction effect caused by clusters and ligands. A comprehensive analysis of the structural parameters of catalysts shows that the cone angle as steric descriptor and butene desorption energy as thermodynamic descriptor can be applied to estimate the reactivity turnover frequency (TOF) with the optimum for UiO-66-L5-NiCl. This work represents the systematic optimization of ligand effect through combination of experimental and theoretical data and presents a proof-of-concept for ethylene dimerization catalyst through simple heterogenization of organometallic catalyst on MOF.
乙烯二聚是一种生产1-丁烯的高效工业化学过程,对新型催化体系的选择性和活性要求很高。本文描述了一系列固定在UiO-66上的单齿膦胺-镍配合物用于乙烯二聚反应。这些催化剂表现出与有机金属催化类似的广泛配体分子可调性,同时保持了金属有机框架(MOF)支架赋予的高稳定性。高度灵活的后合成修饰方法使本研究能够制备用五种不同取代膦和3种含氮配体功能化的MOF,并确定具有异丙基取代镍单膦胺配合物的最佳催化剂UiO-66-L5-NiCl。该催化剂在15巴乙烯压力下表现出显著的活性和选择性,TOF为29000(mol/mol/h),对1-丁烯的选择性为99%。该催化剂也适用于填充柱微反应器中的连续生产,TON为72000(mol/mol)。通过密度泛函理论(DFT)计算研究了乙烯齐聚的机理。对均相配合物和截短的MOF模型计算的能量分布分别揭示了β-氢消除和迁移插入作为不同的速率决定步骤。UiO-66-L5-NiCl的活化能垒低于其他体系,这可能是由于簇和配体引起的限制效应。对催化剂结构参数的综合分析表明,锥角作为空间描述符和丁烯脱附能作为热力学描述符可用于估计反应性周转频率(TOF),其中UiO-66-L5-NiCl为最佳。这项工作代表了通过实验和理论数据的结合对配体效应进行系统优化,并通过在MOF上简单地使有机金属催化剂非均相化,为乙烯二聚催化剂提供了概念验证。