Tian Yunan, Li Yuyu, Shen Huasen, Cheng Xiangxin, Cheng Yiming, Zhang Wen, Yu Peng, Yang Zehui, Xue Lixing, Fan Yameng, Zhao Lingfei, Peng Jian, Wang Jiazhao, Li Zhaohuai, Xie Ming, Liu Huakun, Dou Shixue
State Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, P. R. China.
Hubei Provincial Engineering Research Center of Surface and Interface Regulation Technology and Equipment for Renewable Energy Materials, Jianghan University, Wuhan, 430056, P. R. China.
Adv Sci (Weinh). 2024 Aug;11(30):e2402380. doi: 10.1002/advs.202402380. Epub 2024 Jun 5.
Simultaneously achieving high-energy-density and high-power-density is a crucial yet challenging objective in the pursuit of commercialized power batteries. In this study, atomic layer deposition (ALD) is employed combined with a coordinated thermal treatment strategy to construct a densely packed, electron-ion dual conductor (EIC) protective coating on the surface of commercial LiNiCoMnO (NCM523) cathode material, further enhanced by gradient Al doping (Al@EIC-NCM523). The ultra-thin EIC effectively suppresses side reactions, thereby enhancing the stability of the cathode-electrolyte interphase (CEI) at high-voltages. The EIC's dual conduction capability provides a potent driving force for Li transport at the interface, promoting the formation of rapid ion deintercalation pathways within the Al@EIC-NCM523 bulk phase. Moreover, the strategic gradient doping of Al serves to anchor the atomic spacing of Ni and O within the structure of Al@EIC-NCM523, curbing irreversible phase transitions at high-voltages and preserving the integrity of its layered structure. Remarkably, Al@EIC-NCM523 displays an unprecedented rate capability (114.7 mAh g at 20 C), and a sustained cycling performance (capacity retention of 74.72% after 800 cycles at 10 C) at 4.6 V. These findings demonstrate that the proposed EIC and doping strategy holds a significant promise for developing high-energy-density and high-power-density lithium-ion batteries (LIBs).
在追求商业化动力电池的过程中,同时实现高能量密度和高功率密度是一个关键但具有挑战性的目标。在本研究中,采用原子层沉积(ALD)并结合协同热处理策略,在商用LiNiCoMnO(NCM523)正极材料表面构建致密堆积的电子 - 离子双导体(EIC)保护涂层,并通过梯度Al掺杂(Al@EIC-NCM523)进一步增强。超薄的EIC有效抑制副反应,从而提高高电压下阴极 - 电解质界面(CEI)的稳定性。EIC的双传导能力为界面处的Li传输提供了强大的驱动力,促进了Al@EIC-NCM523体相内快速离子脱嵌通道的形成。此外,Al的梯度掺杂策略有助于固定Al@EIC-NCM523结构中Ni和O的原子间距,抑制高电压下的不可逆相变并保持其层状结构的完整性。值得注意的是,Al@EIC-NCM523在4.6 V时表现出前所未有的倍率性能(20 C下为114.7 mAh g)和持续的循环性能(10 C下800次循环后容量保持率为74.72%)。这些发现表明,所提出的EIC和掺杂策略在开发高能量密度和高功率密度锂离子电池(LIBs)方面具有重大前景。