Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.
Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan, USA.
Dev Neurobiol. 2024 Jul;84(3):217-235. doi: 10.1002/dneu.22950. Epub 2024 Jun 4.
The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (Pcdhg) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (Pcdhg). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both Pcdhg and Pcdhg cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the Pcdhg mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.
Pcdhg 基因簇编码 22 种 γ-原钙黏蛋白(γ-Pcdh)细胞黏附分子,这些分子对神经发育的多个方面具有关键调节作用,包括神经元存活、树突和轴突分支以及突触形成和成熟。每种 γ-Pcdh 同工型都具有独特的蛋白结构域——一个具有同种亲和力的细胞外结构域和一个紧邻质膜的细胞质结构域,以及所有同工型共享的 C 端细胞质结构域。同工型特异性与共享结构域在调节不同 γ-Pcdh 功能方面的程度仍不完全清楚。我们之前的体外研究表明,蛋白激酶 C(PKC)对共享 C 端基序内一个丝氨酸残基的磷酸化是一种机制,通过该机制,γ-Pcdh 通过锚蛋白重复结构域富含丙氨酸的蛋白激酶 C 底物(MARCKS)促进树突分支的作用被阻断。在这里,我们使用 CRISPR/Cas9 基因组编辑技术生成了两种新的仅表达不可磷酸化 γ-Pcdh 的小鼠品系,这两种品系要么由于丝氨酸到丙氨酸的突变(Pcdhg),要么由于插入一个提前终止密码子导致 15 个氨基酸的 C 端缺失(Pcdhg)。这两种品系都是可育的,且 Pcdhg 和 Pcdhg 皮质的树突棘密度和成熟度没有变化。然而,两种品系的皮质锥体神经元树突分支都显著增加,同时活性 MARCKS 水平也增加。有趣的是,尽管 γ-Pcdh 蛋白水平显著降低,但 Pcdhg 突变产生的表型最强,即使是杂合突变体也表现出分支增加。本研究证实,共享 C 端基序的磷酸化是 γ-Pcdh 负调控的关键,并有助于对 γ-Pcdh 家族功能的深入理解,其中单个同工型和离散的蛋白结构域都发挥着不同的作用。