Suppr超能文献

用于少样本图像分类的原型贝叶斯元学习

Prototype Bayesian Meta-Learning for Few-Shot Image Classification.

作者信息

Fu Meijun, Wang Xiaomin, Wang Jun, Yi Zhang

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7010-7024. doi: 10.1109/TNNLS.2024.3403865. Epub 2025 Apr 4.

Abstract

Meta-learning aims to leverage prior knowledge from related tasks to enable a base learner to quickly adapt to new tasks with limited labeled samples. However, traditional meta-learning methods have limitations as they provide an optimal initialization for all new tasks, disregarding the inherent uncertainty induced by few-shot tasks and impeding task-specific self-adaptation initialization. In response to this challenge, this article proposes a novel probabilistic meta-learning approach called prototype Bayesian meta-learning (PBML). PBML focuses on meta-learning variational posteriors within a Bayesian framework, guided by prototype-conditioned prior information. Specifically, to capture model uncertainty, PBML treats both meta- and task-specific parameters as random variables and integrates their posterior estimates into hierarchical Bayesian modeling through variational inference (VI). During model inference, PBML employs Laplacian estimation to approximate the integral term over the likelihood loss, deriving a rigorous upper-bound for generalization errors. To enhance the model's expressiveness and enable task-specific adaptive initialization, PBML proposes a data-driven approach to model the task-specific variational posteriors. This is achieved by designing a generative model structure that incorporates prototype-conditioned task-dependent priors into the random generation of task-specific variational posteriors. Additionally, by performing latent embedding optimization, PBML decouples the gradient-based meta-learning from the high-dimensional variational parameter space. Experimental results on benchmark datasets for few-shot image classification illustrate that PBML attains state-of-the-art or competitive performance when compared to other related works. Versatility studies demonstrate the adaptability and applicability of PBML in addressing diverse and challenging few-shot tasks. Furthermore, ablation studies validate the performance gains attributed to the inference and model components.

摘要

元学习旨在利用相关任务的先验知识,使基础学习器能够在有限的标记样本下快速适应新任务。然而,传统的元学习方法存在局限性,因为它们为所有新任务提供了最优初始化,而忽略了少样本任务所带来的内在不确定性,并阻碍了特定任务的自适应初始化。针对这一挑战,本文提出了一种新的概率元学习方法,称为原型贝叶斯元学习(PBML)。PBML专注于在贝叶斯框架内对元学习变分后验进行建模,并由原型条件先验信息引导。具体而言,为了捕捉模型不确定性,PBML将元参数和特定任务参数都视为随机变量,并通过变分推理(VI)将它们的后验估计整合到分层贝叶斯建模中。在模型推理过程中,PBML采用拉普拉斯估计来近似似然损失上的积分项,从而得出泛化误差的严格上界。为了提高模型的表达能力并实现特定任务的自适应初始化,PBML提出了一种数据驱动的方法来对特定任务的变分后验进行建模。这是通过设计一种生成模型结构来实现的,该结构将原型条件任务依赖先验纳入到特定任务变分后验的随机生成中。此外,通过执行潜在嵌入优化,PBML将基于梯度的元学习与高维变分参数空间解耦。在少样本图像分类基准数据集上的实验结果表明,与其他相关工作相比,PBML达到了当前最优或具有竞争力的性能。通用性研究证明了PBML在解决各种具有挑战性的少样本任务中的适应性和适用性。此外,消融研究验证了推理和模型组件所带来的性能提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验