Suppr超能文献

基于代表性全局原型的少样本学习。

Few-shot learning with representative global prototype.

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China.

出版信息

Neural Netw. 2024 Dec;180:106600. doi: 10.1016/j.neunet.2024.106600. Epub 2024 Aug 5.

Abstract

Few-shot learning is often challenged by low generalization performance due to the model is mostly learned with the base classes only. To mitigate the above issues, a few-shot learning method with representative global prototype is proposed in this paper. Specifically, to enhance generalization to novel class, we propose a strategy for jointly training base and novel classes. This process produces prototypes characterizing the class information called representative global prototypes. Additionally, to avoid the problem of data imbalance and prototype bias caused by newly added categories of sparse samples, a novel sample synthesis method is proposed for augmenting more representative samples of novel class. Finally, representative samples and non-representative samples with high uncertainty are selected to enhance the representational and discriminative abilities of the global prototype. Intensive experiments have been conducted on two popular benchmark datasets, and the experimental results show that this method significantly improves the classification ability of few-shot learning tasks and achieves state-of-the-art performance.

摘要

由于模型主要是通过基础类别进行学习的,因此,小样本学习通常会受到泛化性能低的挑战。为了解决上述问题,本文提出了一种具有代表性全局原型的小样本学习方法。具体来说,为了提高对新类别的泛化能力,我们提出了一种联合训练基础类和新类别的策略。这个过程产生了表示类信息的原型,称为代表性全局原型。此外,为了避免由于新添加的类别样本稀疏而导致的数据不平衡和原型偏差问题,我们提出了一种新的样本合成方法,用于增加新类别的更具代表性的样本。最后,选择具有高不确定性的代表性样本和非代表性样本,以增强全局原型的表示和判别能力。我们在两个流行的基准数据集上进行了大量实验,实验结果表明,该方法显著提高了小样本学习任务的分类能力,达到了最新的性能水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验