Institute for Advanced Research, Nagoya University, Nagoya, Japan.
Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan.
Nature. 2024 Jul;631(8019):67-72. doi: 10.1038/s41586-024-07513-x. Epub 2024 Jun 5.
Since the demonstration of p-type gallium nitride (GaN) through doping with substitutional magnesium (Mg) atoms, rapid and comprehensive developments, such as blue light-emitting diodes, have considerably shaped our modern lives and contributed to a more carbon-neutral society. However, the details of the interplay between GaN and Mg have remained largely unknown. Here we observe that Mg-intercalated GaN superlattices can form spontaneously by annealing a metallic Mg film on GaN at atmospheric pressure. To our knowledge, this marks the first instance of a two-dimensional metal intercalated into a bulk semiconductor, with each Mg monolayer being intricately inserted between several monolayers of hexagonal GaN. Characterized as an interstitial intercalation, this process induces substantial uniaxial compressive strain perpendicular to the interstitial layers. Consequently, the GaN layers in the Mg-intercalated GaN superlattices exhibit an exceptional elastic strain exceeding -10% (equivalent to a stress of more than 20 GPa), among the highest recorded for thin-film materials. The strain alters the electronic band structure and greatly enhances hole transport along the compression direction. Furthermore, the Mg sheets induce a unique periodic transition in GaN polarity, generating polarization-field-induced net charges. These characteristics offer fresh insights into semiconductor doping and conductivity enhancement, as well as into elastic strain engineering of nanomaterials and metal-semiconductor superlattices.
自从通过在掺杂物中用替代原子镁(Mg)掺杂的方式证明了 p 型氮化镓(GaN)以来,快速且全面的发展,如蓝色发光二极管,极大地塑造了我们的现代生活,并为更具碳中性的社会做出了贡献。然而,GaN 和 Mg 之间相互作用的细节在很大程度上仍然未知。在这里,我们观察到在常压下,退火金属 Mg 薄膜在 GaN 上可以自发形成 Mg 插入的 GaN 超晶格。据我们所知,这标志着首例二维金属插入块状半导体,其中每个 Mg 单层都精巧地插入几层六方 GaN 之间。这种过程被表征为间隙插入,会导致垂直于间隙层的显著单轴压缩应变。因此,在 Mg 插入的 GaN 超晶格中,GaN 层表现出异常的弹性应变超过-10%(相当于超过 20 GPa 的应力),这是薄膜材料中记录的最高值之一。应变会改变电子能带结构,并极大地增强沿压缩方向的空穴输运。此外,Mg 薄片会在 GaN 极性中诱导独特的周期性转变,产生极化场诱导的净电荷。这些特性为半导体掺杂和电导率增强,以及纳米材料和金属半导体超晶格的弹性应变工程提供了新的见解。