Lee Yeonjoo, Choi Soo Ho, Kim Hyunseok, Yoo Jinkyoung
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Small Methods. 2025 Aug;9(8):e2401815. doi: 10.1002/smtd.202401815. Epub 2025 Jan 7.
Epitaxy, a process to prepare crystalline materials in nanostructures and thin films, is the core technology for preparing high-quality materials as a key enabler of next-generation microelectronics and quantum information system. Progress in epitaxy has been expanding the choice of materials and their heterostructures beyond the combinations limited by materials compatibility. However, the improvement of material quality, physical implementation of materials with unique properties, and integration of incommensurate materials in an architecture have been the challenging issues. Emerging materials, including 2D materials and quantum materials, have opened opportunities to study epitaxy mechanisms and realize various functional devices. Acceleration of discovery and progress in epitaxy research should be accomplished by "understanding of epitaxy under various circumstances at multiple length scales" and "integration of experiments and models." In the perspective, a basic summary of the status of epitaxially grown materials, the challenges in epitaxy research, and integration of modeling epitaxy and ultimate control of the epitaxy process with advanced characterization techniques are discussed.
外延生长是一种在纳米结构和薄膜中制备晶体材料的过程,作为下一代微电子和量子信息系统的关键推动因素,它是制备高质量材料的核心技术。外延生长技术的进步使得材料及其异质结构的选择范围超出了受材料兼容性限制的组合。然而,提高材料质量、实现具有独特性能材料的物理应用以及在一个架构中整合不相容材料一直是具有挑战性的问题。包括二维材料和量子材料在内的新兴材料为研究外延生长机制和实现各种功能器件提供了机会。外延生长研究的发现和进展加速应通过“在多个长度尺度下理解各种情况下的外延生长”和“实验与模型的整合”来实现。从这个角度出发,本文讨论了外延生长材料的现状基本总结、外延生长研究中的挑战,以及将外延生长建模与利用先进表征技术对外延生长过程进行最终控制的整合。