Ma Jun, Yang Peng, Zhou Zhibin, Song Tengfei, Jia Liang, Ye Xiaofei, Yan Wei, Sun Jiuyi, Ye Tianwen, Zhu Lei
Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Health Statistics, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
J Adv Res. 2025 May;71:173-188. doi: 10.1016/j.jare.2024.05.033. Epub 2024 Jun 4.
Osteoarthritis (OA) is the most common arthritis that is characterized by the progressive synovial inflammation and loss of articular cartilage. Although GYY4137 is a novel and slow-releasing hydrogen sulfide (HS) donor with potent anti-inflammatory properties that may modulate the progression of OA, its underlying mechanism remains unclear.
In this study, we validated the protective role of GYY4137 against OA pathological courses and elucidated its underlying regulatory mechanisms.
Cell transfection, immunofluorescence staining, EdU assay, transmission electron microscopy, mitochondrial membrane potential measurement, electrophoretic mobility shift assay, sulfhydration assay, qPCR and western blot assays were performed in the primary mouse chondrocytes or the mouse macrophage cell line raw 264.7 for in vitro study. DMM-induced OA mice model and Macrophage-specific p65 knockout (p65 LysM-CreER) mice on the C57BL/6 background were used for in vivo study.
We found that GYY4137 can alleviate OA progress by suppressing synovium pyroptosis in vivo. Moreover, our in vitro data revealed that GYY4137 attenuates inflammation-induced NLRP3 and caspase-1 activation and results in a decrease of IL-1β production in macrophages. Mechanistically, GYY4137 increased persulfidation of NF-kB p65 in response to inflammatory stimuli that results in a decrease of cellular reactive oxygen species (ROS) accumulation and ameliorates mitochondrial dysfunctions. Using site-directed mutagenesis, we showed that HS persulfidates cysteine38 in p65 protein and hampers p65 transcriptional activity, and p65 mutant impaired macrophage responses to GYY4137.
These findings suggest a mechanism by which GYY4137 through redox modification of p65 participates in inhibiting NLRP3 activation by OA to regulate inflammatory responses. Thus, we propose that GYY4137 represents a promising novel therapeutic strategy for the treatment of OA.
骨关节炎(OA)是最常见的关节炎,其特征为进行性滑膜炎症和关节软骨丧失。尽管GYY4137是一种新型缓释硫化氢(HS)供体,具有强大的抗炎特性,可能调节OA的进展,但其潜在机制仍不清楚。
在本研究中,我们验证了GYY4137对OA病理过程的保护作用,并阐明了其潜在的调节机制。
在原代小鼠软骨细胞或小鼠巨噬细胞系raw 264.7中进行细胞转染、免疫荧光染色、EdU检测、透射电子显微镜、线粒体膜电位测量、电泳迁移率变动分析、硫氢化检测、qPCR和蛋白质免疫印迹分析,以进行体外研究。采用C57BL/6背景的DMM诱导的OA小鼠模型和巨噬细胞特异性p65基因敲除(p65 LysM-CreER)小鼠进行体内研究。
我们发现GYY4137可通过抑制体内滑膜细胞焦亡来减轻OA进展。此外,我们的体外数据显示,GYY4137可减轻炎症诱导的NLRP3和半胱天冬酶-1激活,并导致巨噬细胞中IL-1β产生减少。机制上,GYY4137可增加炎症刺激下NF-κB p65的过硫化,导致细胞活性氧(ROS)积累减少,并改善线粒体功能障碍。通过定点诱变,我们发现HS使p65蛋白中的半胱氨酸38过硫化,并阻碍p65的转录活性,且p65突变体损害了巨噬细胞对GYY4137的反应。
这些发现提示了一种机制,即GYY4137通过对p65的氧化还原修饰参与抑制OA诱导的NLRP3激活,从而调节炎症反应。因此,我们认为GYY4137是一种有前景的治疗OA的新型治疗策略。