Kenmochi Naoki, Ida Katsumi, Tokuzawa Tokihiko, Mizuno Yoshinori, Yasuhara Ryo, Funaba Hisamichi, Uehara Hiyori, Den Hartog Daniel J, Yoshinuma Mikirou, Takemura Yuki, Igami Hiroe, Yanai Ryoma
National Institute for Fusion Science, Toki, Gifu, 509-5292, Japan.
The Graduate University for Advanced Studies, SOKENDAI, Toki, Gifu, 509-5292, Japan.
Sci Rep. 2024 Jun 6;14(1):13006. doi: 10.1038/s41598-024-63788-0.
The experimental findings from the Large Helical Device have demonstrated a fast, nondiffusive behavior during the propagation of heat pulses, with an observed increase in speed with reduction in their temporal width. Concurrent propagation of the temperature gradient and turbulence, in a timeframe spanning from a few milliseconds to tens of milliseconds, aligned with the avalanche model. These results indicate that the more spatiotemporally localized the heat and turbulence pulses are, the greater the deviation of the plasma from its equilibrium state, coupled with faster propagation velocity. This insight is pivotal for future fusion reactors, which necessitate the maintenance of a steady-state, non-equilibrium condition.
大型螺旋装置的实验结果表明,在热脉冲传播过程中存在快速、非扩散行为,观察到速度随时间宽度减小而增加。在从几毫秒到几十毫秒的时间范围内,温度梯度和湍流的同时传播与雪崩模型相符。这些结果表明,热脉冲和湍流脉冲在时空上的局域性越强,等离子体与其平衡态的偏差就越大,同时传播速度也越快。这一见解对于未来的聚变反应堆至关重要,因为聚变反应堆需要维持稳态的非平衡条件。