INSERM U1153, Team ECSTRRA, Hôpital Saint Louis, Paris, France.
Université Paris Cité, Paris, France.
Stat Med. 2024 Aug 15;43(18):3364-3382. doi: 10.1002/sim.10130. Epub 2024 Jun 6.
Adaptive randomized clinical trials are of major interest when dealing with a time-to-event outcome in a prolonged observation window. No consensus exists either to define stopping boundaries or to combine values or test statistics in the terminal analysis in the case of a frequentist design and sample size adaptation. In a one-sided setting, we compared three frequentist approaches using stopping boundaries relying on -spending functions and a Bayesian monitoring setting with boundaries based on the posterior distribution of the log-hazard ratio. All designs comprised a single interim analysis with an efficacy stopping rule and the possibility of sample size adaptation at this interim step. Three frequentist approaches were defined based on the terminal analysis: combination of stagewise statistics (Wassmer) or of values (Desseaux), or on patientwise splitting (Jörgens), and we compared the results with those of the Bayesian monitoring approach (Freedman). These different approaches were evaluated in a simulation study and then illustrated on a real dataset from a randomized clinical trial conducted in elderly patients with chronic lymphocytic leukemia. All approaches controlled for the type I error rate, except for the Bayesian monitoring approach, and yielded satisfactory power. It appears that the frequentist approaches are the best in underpowered trials. The power of all the approaches was affected by the violation of the proportional hazards (PH) assumption. For adaptive designs with a survival endpoint and a one-sided alternative hypothesis, the Wassmer and Jörgens approaches after sample size adaptation should be preferred, unless violation of PH is suspected.
当处理长时间观察窗口中的事件时间结局时,适应性随机临床试验非常重要。在频繁主义设计和样本量自适应的情况下,对于如何定义停止边界或组合终端分析中的 值或检验统计量,目前尚无共识。在单侧设置下,我们比较了三种基于 -消耗函数的频繁主义方法和一种基于对数风险比后验分布的贝叶斯监测设置的停止边界。所有设计都包含单次中期分析,具有疗效停止规则和在此中期步骤中进行样本量自适应的可能性。基于终端分析定义了三种频繁主义方法:阶段统计量的组合(Wassmer)或 值的组合(Desseaux),或患者分割(Jörgens),并将结果与贝叶斯监测方法(Freedman)进行了比较。这些不同的方法在模拟研究中进行了评估,然后在慢性淋巴细胞白血病老年患者的随机临床试验的真实数据集上进行了说明。除了贝叶斯监测方法外,所有方法都控制了Ⅰ类错误率,并获得了令人满意的功效。似乎频繁主义方法在功效不足的试验中效果最好。所有方法的功效都受到违反比例风险(PH)假设的影响。对于具有生存终点和单侧替代假设的适应性设计,在怀疑违反 PH 之前,应优先选择经过样本量自适应后的 Wassmer 和 Jörgens 方法。