Rafiq Qaiser, Khan Muhammad Tahir, Hayat Sardar Sikandar, Azam Sikander, Rahman Amin Ur, Elansary Hosam O, Shan Muhammad
Department of Physics, International Islamic University, Islamabad, 44000, Pakistan.
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
Phys Chem Chem Phys. 2024 Jun 19;26(24):17118-17131. doi: 10.1039/d3cp04504h.
Noble metals such as gold (Au), zinc (Zn), and iron (Fe) are highly significant in both fundamental and technological contexts owing to their applications in optoelectronics, optical coatings, transparent coatings, photodetectors, light-emitting devices, photovoltaics, nanotechnology, batteries, and thermal barrier coatings. This study presents a comprehensive investigation of the optoelectronic properties of Fe(111) and Au, Zn/Fe(111) materials using density functional theory (DFT) first-principles method with a focus on both materials' spin orientations. The optoelectronic properties were obtained employing the generalized gradient approximation (GGA) and the full-potential linearized augmented plane wave (FP-LAPW) approach, integrating the exchange-correlation function with the Hubbard potential U for improved accuracy. The arrangement of Fe(111) and Au, Zn/Fe(111) materials was found to lack an energy gap, indicating a metallic behavior in both the spin-up state and the spin-down state. The optical properties of Fe(111) and Au, Zn/Fe(111) materials, including their absorption coefficient, reflectivity, energy-loss function, refractive index, extinction coefficient, and optical conductivity, were thoroughly examined for both spin channels in the spectral region from 0.0 eV to 14 eV. The calculations revealed significant spin-dependent effects in the optical properties of the materials. Furthermore, this study explored the properties of the electronic bonding between several species in Fe(111) and Au, Zn/Fe(111) materials by examining the density distribution mapping of charge within the crystal symmetries.
金(Au)、锌(Zn)和铁(Fe)等贵金属在基础和技术领域都具有高度重要性,这是由于它们在光电子学、光学涂层、透明涂层、光电探测器、发光器件、光伏、纳米技术、电池和热障涂层中的应用。本研究使用密度泛函理论(DFT)第一性原理方法,对Fe(111)以及Au、Zn/Fe(111)材料的光电特性进行了全面研究,重点关注这两种材料的自旋取向。采用广义梯度近似(GGA)和全势线性缀加平面波(FP-LAPW)方法,并将交换关联函数与哈伯德势U相结合以提高精度,从而获得了光电特性。研究发现,Fe(111)以及Au、Zn/Fe(111)材料的能带结构中没有能隙,这表明在自旋向上和自旋向下状态下均呈现金属行为。在0.0 eV至14 eV的光谱区域内,对Fe(111)以及Au、Zn/Fe(111)材料的光学特性进行了全面研究,包括吸收系数、反射率、能量损失函数、折射率、消光系数和光导率,且考虑了两个自旋通道。计算结果表明,材料的光学特性存在显著的自旋相关效应。此外,本研究通过考察晶体对称性内电荷的密度分布映射,探究了Fe(111)以及Au、Zn/Fe(111)材料中几种原子间的电子键合特性。