Department of Molecular Medicine, University of Padova, Padova, Italy.
Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy.
Gut Microbes. 2024 Jan-Dec;16(1):2363015. doi: 10.1080/19490976.2024.2363015. Epub 2024 Jun 7.
Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'
肠道微生物群对人类健康起着至关重要的作用。已经描述了肠道微生物群通过神经、内分泌和免疫途径与其他器官之间的几个通讯轴,并且肠道微生物群组成的扰动与越来越多疾病的发生和进展有关。在这里,我们分析了具有以下肠道微生物群状态的新生和年轻成年小鼠的周围神经、背根神经节(DRG)和骨骼肌:a)无菌(GF),b)定植有 12 种特定肠道细菌菌株的无菌动物(Oligo-Mouse-Microbiota,OMM12),或 c)天然复杂肠道微生物群(CGM)。体视学和形态计量学分析表明,肠道微生物群的缺失会损害躯体正中神经的发育,导致直径更小、轴突过度髓鞘化以及无髓纤维更小。相应地,DRG 和坐骨神经转录组分析突出了一组差异表达的发育和髓鞘化基因。有趣的是,神经调节蛋白 1(NRG1)的 III 型同工型,已知是施万细胞髓鞘形成所必需的神经元信号,在年轻成年 GF 小鼠中过度表达,随之而来的是早期生长反应 2()转录因子的过度表达,这是施万细胞在髓鞘形成开始时表达的基本基因。最后,GF 状态导致骨骼肌组织学萎缩,神经肌肉接头形成受损,相关基因表达失调。总之,我们首次证明了肠道微生物群对躯体周围神经系统正常发育及其与骨骼肌的功能连接的调节作用,从而提示存在一种新的“肠道微生物群-周围神经系统轴”。