Suppr超能文献

使用深度学习算法在冠状动脉CT血管造影上自动检测和分类冠状动脉粥样硬化斑块。

Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm.

作者信息

Liang Jing, Zhou Kefeng, Chu Michael P, Wang Yujie, Yang Gang, Li Hui, Chen Wenping, Yin Kejie, Xue Qiucang, Zheng Chao, Gu Rong, Li Qiaoling, Chen Xingbiao, Sheng Zhihong, Chu Baocheng, Mu Dan, Yu Hongming, Zhang Bing

机构信息

Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.

Clinical Atherosclerosis Research Laboratory, Division of Cardiology, University of Washington, Seattle, WA, USA.

出版信息

Quant Imaging Med Surg. 2024 Jun 1;14(6):3837-3850. doi: 10.21037/qims-23-1513. Epub 2024 May 24.

Abstract

BACKGROUND

Coronary artery disease (CAD) is the leading cause of mortality worldwide. Recent advances in deep learning technology promise better diagnosis of CAD and improve assessment of CAD plaque buildup. The purpose of this study is to assess the performance of a deep learning algorithm in detecting and classifying coronary atherosclerotic plaques in coronary computed tomographic angiography (CCTA) images.

METHODS

Between January 2019 and September 2020, CCTA images of 669 consecutive patients with suspected CAD from Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine were included in this study. There were 106 patients included in the retrospective plaque detection analysis, which was evaluated by a deep learning algorithm and four independent physicians with varying clinical experience. Additionally, 563 patients were included in the analysis for plaque classification using the deep learning algorithm, and their results were compared with those of expert radiologists. Plaques were categorized as absent, calcified, non-calcified, or mixed.

RESULTS

The deep learning algorithm exhibited higher sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy {92% [95% confidence interval (CI): 89.5-94.1%], 87% (95% CI: 84.2-88.5%), 79% (95% CI: 76.1-82.4%), 95% (95% CI: 93.4-96.3%), and 89% (95% CI: 86.9-90.0%)} compared to physicians with ≤5 years of clinical experience in CAD diagnosis for the detection of coronary plaques. The algorithm's overall sensitivity, specificity, PPV, NPV, accuracy, and Cohen's kappa for plaque classification were 94% (95% CI: 92.3-94.7%), 90% (95% CI: 88.8-90.3%), 70% (95% CI: 68.3-72.1%), 98% (95% CI: 97.8-98.5%), 90% (95% CI: 89.8-91.1%) and 0.74 (95% CI: 0.70-0.78), indicating strong performance.

CONCLUSIONS

The deep learning algorithm has demonstrated reliable and accurate detection and classification of coronary atherosclerotic plaques in CCTA images. It holds the potential to enhance the diagnostic capabilities of junior radiologists and junior intervention cardiologists in the CAD diagnosis, as well as to streamline the triage of patients with acute coronary symptoms.

摘要

背景

冠状动脉疾病(CAD)是全球范围内主要的死亡原因。深度学习技术的最新进展有望实现对CAD的更好诊断,并改善对CAD斑块形成的评估。本研究的目的是评估一种深度学习算法在冠状动脉计算机断层扫描血管造影(CCTA)图像中检测和分类冠状动脉粥样硬化斑块的性能。

方法

2019年1月至2020年9月期间,来自南京中医药大学附属南京鼓楼医院临床医学院的669例疑似CAD连续患者的CCTA图像被纳入本研究。回顾性斑块检测分析纳入了106例患者,由一种深度学习算法和四名临床经验各异的独立医生进行评估。此外,563例患者被纳入使用深度学习算法进行斑块分类的分析,并将其结果与专家放射科医生的结果进行比较。斑块被分类为无、钙化、非钙化或混合性。

结果

与CAD诊断临床经验≤5年的医生相比,深度学习算法在检测冠状动脉斑块方面表现出更高的敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和准确性{92%[95%置信区间(CI):89.5-94.1%],87%(95%CI:84.2-88.5%),79%(95%CI:76.1-82.4%),95%(95%CI:93.4-96.3%),89%(95%CI:86.9-90.0%)}。该算法在斑块分类方面的总体敏感性、特异性、PPV、NPV、准确性和科恩kappa系数分别为94%(95%CI:92.3-94.7%),90%(95%CI:88.8-90.3%),70%(95%CI:68.3-72.1%),98%(95%CI:97.8-98.5%),90%(95%CI:89.8-91.1%)和0.74(95%CI:0.70-0.78),表明性能良好。

结论

深度学习算法已证明在CCTA图像中对冠状动脉粥样硬化斑块进行可靠且准确的检测和分类。它有可能提高初级放射科医生和初级介入心脏病专家在CAD诊断方面的诊断能力,并简化急性冠状动脉症状患者的分诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bd/11151262/97949e684c7a/qims-14-06-3837-f1.jpg

相似文献

1
Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm.
Quant Imaging Med Surg. 2024 Jun 1;14(6):3837-3850. doi: 10.21037/qims-23-1513. Epub 2024 May 24.
2
Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis.
Comput Methods Programs Biomed. 2020 Nov;196:105651. doi: 10.1016/j.cmpb.2020.105651. Epub 2020 Jul 9.
3
Relationship of coronary artery plaque composition to coronary artery stenosis severity: results from the prospective multicenter ACCURACY trial.
Atherosclerosis. 2011 Dec;219(2):573-8. doi: 10.1016/j.atherosclerosis.2011.05.032. Epub 2011 May 31.
5
Deep learning-based atherosclerotic coronary plaque segmentation on coronary CT angiography.
Eur Radiol. 2022 Oct;32(10):7217-7226. doi: 10.1007/s00330-022-08801-8. Epub 2022 May 7.
7
Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.
Diagn Interv Imaging. 2025 Feb;106(2):68-75. doi: 10.1016/j.diii.2024.09.012. Epub 2024 Oct 4.
9
Performance of a deep learning algorithm for the evaluation of CAD-RADS classification with CCTA.
Atherosclerosis. 2020 Feb;294:25-32. doi: 10.1016/j.atherosclerosis.2019.12.001. Epub 2019 Dec 23.
10
The Diagnostic Performance of Coronary CT Angiography for the Assessment of Coronary Stenosis in Calcified Plaque.
PLoS One. 2016 May 5;11(5):e0154852. doi: 10.1371/journal.pone.0154852. eCollection 2016.

引用本文的文献

本文引用的文献

3
Calcium Scoring at Coronary CT Angiography Using Deep Learning.
Radiology. 2022 Feb;302(2):309-316. doi: 10.1148/radiol.2021211483. Epub 2021 Nov 23.
4
Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events.
Curr Opin Cardiol. 2021 Nov 1;36(6):784-792. doi: 10.1097/HCO.0000000000000917.
5
Computed tomography of coronary artery atherosclerosis: A review.
J Med Imaging Radiat Sci. 2021 Nov;52(3S):S19-S39. doi: 10.1016/j.jmir.2021.08.007. Epub 2021 Sep 1.
6
Exploring the diagnostic effectiveness for myocardial ischaemia based on CCTA myocardial texture features.
BMC Cardiovasc Disord. 2021 Aug 31;21(1):416. doi: 10.1186/s12872-021-02206-z.
7
Computed Tomography Angiography under Deep Learning in the Treatment of Atherosclerosis with Rapamycin.
J Healthc Eng. 2021 Jul 22;2021:4543702. doi: 10.1155/2021/4543702. eCollection 2021.
8
Coronary artery calcium progression after coronary artery bypass grafting surgery.
Open Heart. 2021 Jun;8(1). doi: 10.1136/openhrt-2021-001684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验