Suppr超能文献

使用深度学习和超高分辨率光子计数冠状动脉CT血管造影术检测冠状动脉疾病

Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.

作者信息

Brendel Jan M, Walterspiel Jonathan, Hagen Florian, Kübler Jens, Brendlin Andreas S, Afat Saif, Paul Jean-François, Küstner Thomas, Nikolaou Konstantin, Gawaz Meinrad, Greulich Simon, Krumm Patrick, Winkelmann Moritz T

机构信息

Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, 72076, Germany.

Institut Mutualiste Montsouris, Department of Radiology, Cardiac Imaging, 75014 Paris, France; Spimed-AI, 75014 Paris, France.

出版信息

Diagn Interv Imaging. 2025 Feb;106(2):68-75. doi: 10.1016/j.diii.2024.09.012. Epub 2024 Oct 4.

Abstract

PURPOSE

The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).

MATERIALS AND METHODS

Consecutive patients with suspected CAD who underwent PC-CCTA between January 2022 and December 2023 were included in this retrospective, single-center study. Non-ultra-high resolution (UHR) PC-CCTA images were analyzed by artificial intelligence using two deep learning models (CorEx, Spimed-AI), and compared to human expert reader assessment using UHR PC-CCTA images. Diagnostic performance for global CAD assessment (at least one significant stenosis ≥ 50 %) was estimated at patient and vessel levels.

RESULTS

A total of 140 patients (96 men, 44 women) with a median age of 60 years (first quartile, 51; third quartile, 68) were evaluated. Significant CAD on UHR PC-CCTA was present in 36/140 patients (25.7 %). The sensitivity, specificity, accuracy, positive predictive value), and negative predictive value of deep learning-based CAD were 97.2 %, 81.7 %, 85.7 %, 64.8 %, and 98.9 %, respectively, at the patient level and 96.6 %, 86.7 %, 88.1 %, 53.8 %, and 99.4 %, respectively, at the vessel level. The area under the receiver operating characteristic curve was 0.90 (95 % CI: 0.83-0.94) at the patient level and 0.92 (95 % CI: 0.89-0.94) at the vessel level.

CONCLUSION

Automated deep learning shows remarkable performance for the diagnosis of significant CAD on non-UHR PC-CCTA images. AI pre-reading may be of supportive value to the human reader in daily clinical practice to target and validate coronary artery stenosis using UHR PC-CCTA.

摘要

目的

本研究旨在评估自动深度学习在光子计数冠状动脉CT血管造影(PC-CCTA)上检测冠状动脉疾病(CAD)的诊断性能。

材料与方法

本回顾性单中心研究纳入了2022年1月至2023年12月期间接受PC-CCTA检查的疑似CAD连续患者。使用两种深度学习模型(CorEx、Spimed-AI)通过人工智能分析非超高分辨率(UHR)PC-CCTA图像,并与使用UHR PC-CCTA图像的人类专家读者评估进行比较。在患者和血管层面评估整体CAD评估(至少一处显著狭窄≥50%)的诊断性能。

结果

共评估了140例患者(96例男性,44例女性),中位年龄为60岁(第一四分位数,51岁;第三四分位数,68岁)。140例患者中有36例(25.7%)在UHR PC-CCTA上存在显著CAD。基于深度学习的CAD在患者层面的敏感性、特异性、准确性、阳性预测值和阴性预测值分别为97.2%、81.7%、85.7%、64.8%和98.9%,在血管层面分别为96.6%、86.7%、88.1%、53.8%和99.4%。受试者操作特征曲线下面积在患者层面为0.90(95%CI:0.83-0.94),在血管层面为0.92(95%CI:0.89-0.94)。

结论

自动深度学习在非UHR PC-CCTA图像上诊断显著CAD表现出卓越性能。在日常临床实践中,人工智能预读对于人类读者使用UHR PC-CCTA靶向和验证冠状动脉狭窄可能具有辅助价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验