Suppr超能文献

真菌细胞壁在真菌致病过程中响应应激信号和重塑时的结构多样化。

Structural diversification of fungal cell wall in response to the stress signaling and remodeling during fungal pathogenesis.

作者信息

Shree Ankita, Pal Surabhi, Verma Praveen Kumar

机构信息

Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India.

出版信息

Physiol Mol Biol Plants. 2024 May;30(5):733-747. doi: 10.1007/s12298-024-01453-6. Epub 2024 May 3.

Abstract

Fungi are one of the most diverse organisms found in our surroundings. The heterotrophic lifestyle of fungi and the ever-changing external environmental factors pose numerous challenges for their survival. Despite all adversities, fungi continuously develop new survival strategies to secure nutrition and space from their host. During host-pathogen interaction, filamentous phytopathogens in particular, effectively infect their hosts by maintaining polarised growth at the tips of hyphae. The fungal cell wall, being the prime component of host contact, plays a crucial role in fortifying the intracellular environment against the harsh external environment. Structurally, the fungal cell wall is a highly dynamic yet rigid component, responsible for maintaining cellular morphology. Filamentous pathogens actively maintain their dynamic cell wall to compensate rapid growth on the host. Additionally, they secrete effectors to dampen the sophisticated mechanisms of plant defense and initiate various downstream signaling cascades to repair the damage inflicted by the host. Thus, the fungal cell wall serves as a key modulator of fungal pathogenicity. The fungal cell wall with their associated signaling mechanisms emerge as intriguing targets for host immunity. This review comprehensively examines and summarizes the multifaceted findings of various research groups regarding the dynamics of the cell wall in filamentous fungal pathogens during host invasion.

摘要

真菌是我们周围环境中最多样化的生物之一。真菌的异养生活方式以及不断变化的外部环境因素给它们的生存带来了诸多挑战。尽管面临种种逆境,真菌仍不断开发新的生存策略,以从宿主那里获取营养和空间。在宿主与病原体的相互作用过程中,尤其是丝状植物病原体,通过在菌丝顶端维持极化生长来有效地感染宿主。真菌细胞壁作为与宿主接触的主要成分,在强化细胞内环境以抵御恶劣外部环境方面起着关键作用。在结构上,真菌细胞壁是一个高度动态但又很坚韧的成分,负责维持细胞形态。丝状病原体积极维持其动态细胞壁,以补偿在宿主上的快速生长。此外,它们分泌效应子来抑制植物防御的复杂机制,并启动各种下游信号级联反应来修复宿主造成的损伤。因此,真菌细胞壁是真菌致病性的关键调节因子。具有相关信号机制的真菌细胞壁成为宿主免疫的有趣靶点。本综述全面考察并总结了各个研究小组关于丝状真菌病原体在宿主入侵期间细胞壁动态的多方面研究结果。

相似文献

1
Structural diversification of fungal cell wall in response to the stress signaling and remodeling during fungal pathogenesis.
Physiol Mol Biol Plants. 2024 May;30(5):733-747. doi: 10.1007/s12298-024-01453-6. Epub 2024 May 3.
2
Cell wall-associated effectors of plant-colonizing fungi.
Mycologia. 2021 Mar-Apr;113(2):247-260. doi: 10.1080/00275514.2020.1831293. Epub 2021 Feb 3.
3
Breakpoint: Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection.
Curr Protein Pept Sci. 2020;21(3):227-244. doi: 10.2174/1389203720666190906165111.
4
β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants.
Fungal Genet Biol. 2016 May;90:53-60. doi: 10.1016/j.fgb.2015.12.004. Epub 2015 Dec 10.
5
Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst.
Plant Commun. 2021 Jan 4;2(3):100142. doi: 10.1016/j.xplc.2021.100142. eCollection 2021 May 10.
6
Cell wall nanoparticles from hyphae of grown with caspofungin, nikkomycin, or pyroquilon trigger different activation profiles in macrophages.
Microbiol Spectr. 2024 Nov 5;12(11):e0064524. doi: 10.1128/spectrum.00645-24. Epub 2024 Sep 27.
7
The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi.
Brief Funct Genomics. 2014 Nov;13(6):456-70. doi: 10.1093/bfgp/elu027. Epub 2014 Jul 23.
8
The battle for chitin recognition in plant-microbe interactions.
FEMS Microbiol Rev. 2015 Mar;39(2):171-83. doi: 10.1093/femsre/fuu003. Epub 2014 Dec 22.
10
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review.
Int J Biol Macromol. 2022 May 1;206:188-202. doi: 10.1016/j.ijbiomac.2022.02.133. Epub 2022 Feb 26.

本文引用的文献

1
Unraveling pathogen deceptive disguise: from modules to mimicry.
Trends Plant Sci. 2024 Apr;29(4):397-399. doi: 10.1016/j.tplants.2023.11.020. Epub 2023 Dec 12.
2
Structure of a fungal 1,3-β-glucan synthase.
Sci Adv. 2023 Sep 15;9(37):eadh7820. doi: 10.1126/sciadv.adh7820. Epub 2023 Sep 13.
5
Modern Biophysics Redefines Our Understanding of Fungal Cell Wall Structure, Complexity, and Dynamics.
mBio. 2022 Jun 28;13(3):e0114522. doi: 10.1128/mbio.01145-22. Epub 2022 May 31.
6
Extracellular targeting of Neurospora crassa cell wall and secreted glycoproteins by DFG-5.
Fungal Genet Biol. 2022 May;160:103686. doi: 10.1016/j.fgb.2022.103686. Epub 2022 Mar 17.
7
A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR.
Nat Commun. 2021 Nov 3;12(1):6346. doi: 10.1038/s41467-021-26749-z.
8
Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network.
Nat Microbiol. 2021 Nov;6(11):1383-1397. doi: 10.1038/s41564-021-00978-w. Epub 2021 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验