Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.
Nat Commun. 2021 Nov 3;12(1):6346. doi: 10.1038/s41467-021-26749-z.
Vast efforts have been devoted to the development of antifungal drugs targeting the cell wall, but the supramolecular architecture of this carbohydrate-rich composite remains insufficiently understood. Here we compare the cell wall structure of a fungal pathogen Aspergillus fumigatus and four mutants depleted of major structural polysaccharides. High-resolution solid-state NMR spectroscopy of intact cells reveals a rigid core formed by chitin, β-1,3-glucan, and α-1,3-glucan, with galactosaminogalactan and galactomannan present in the mobile phase. Gene deletion reshuffles the composition and spatial organization of polysaccharides, with significant changes in their dynamics and water accessibility. The distribution of α-1,3-glucan in chemically isolated and dynamically distinct domains supports its functional diversity. Identification of valines in the alkali-insoluble carbohydrate core suggests a putative function in stabilizing macromolecular complexes. We propose a revised model of cell wall architecture which will improve our understanding of the structural response of fungal pathogens to stresses.
人们投入了大量精力来开发针对细胞壁的抗真菌药物,但这种富含碳水化合物的复合物的超分子结构仍未得到充分理解。在这里,我们比较了真菌病原体烟曲霉和四个主要结构多糖缺失的突变体的细胞壁结构。完整细胞的高分辨率固态 NMR 光谱揭示了由几丁质、β-1,3-葡聚糖和α-1,3-葡聚糖组成的刚性核心,可动相中存在半乳糖胺半乳糖和半乳甘露聚糖。基因缺失重组了多糖的组成和空间组织,其动态和水可及性发生了显著变化。化学分离和动态上不同的区域中α-1,3-葡聚糖的分布支持其功能多样性。在碱不溶性碳水化合物核心中鉴定出缬氨酸表明其在稳定大分子复合物中具有潜在功能。我们提出了一个经修订的细胞壁结构模型,这将有助于我们了解真菌病原体对压力的结构反应。