Suppr超能文献

基于DNA甲基化的精确分子分型揭示肺腺癌的异质性

Precise Molecular Subtyping Reveals Heterogeneity of Lung Adenocarcinoma Based on DNA Methylation.

作者信息

Shi Jiaxin, Zhang Mengyan, Su Mu, Peng Bo, Xu Ran, Wang Chenghao, Zhou Xiang, Zhang Yan, Zhang Linyou

机构信息

Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.

School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Curr Med Chem. 2024 Jun 5. doi: 10.2174/0109298673309365240529143615.

Abstract

BACKGROUND

Due to the high heterogeneity of lung adenocarcinoma (LUAD), which restricts the effectiveness of therapy, precise molecular subgrouping of LUAD is of great significance. Clinical research has demonstrated the significant potential of DNA methylation as a classification indicator for human malignancies.

METHODS

WGML framework (which was developed based on weighted gene correlation network analysis (WGCNA), Gene Ontology (GO), and machine learning) was developed to precisely subgroup molecular subtypes of LUAD. This framework included two parts: the WG algorithm and the machine learning part. The WG algorithm part was an original algorithm used to obtain a crucial module, which was characterized by weighted correlation network analysis, functional annotation, and mathematical algorithms. The machine learning part utilized the Boruta algorithm, random forest algorithm, and Gradient Boosting Regression Tree algorithm to select feature genes. Then, based on the results of the WGML framework, subtypes were computed by the hierarchical clustering algorithm. A series of analyses, including dimensionality reduction methods, survival analysis, clinical stage analysis, immune infiltration analysis, tumor environment analysis, immune checkpoints analysis, TIDE analysis, CYT analysis, somatic mutation analysis, and drug sensitivity analysis, were utilized to demonstrate the effectiveness of subgrouping. GEO datasets were used to externally validate the results. Meanwhile, another subgrouping method of LUAD from another study was employed to compare with the WGML framework.

RESULT

By importing DNA methylation data into the WGML framework, nine genes were obtained to further subgroup LUAD. Three subtypes, the Carcinogenesis subtype, Immune-infiltration subtype, and Chemoresistance subtype, were identified. The dimensionality reduction method exhibited great distinctness between subtypes. A series of analyses were employed to exhibit the difference among the three subtypes and to demonstrate the accuracy of the definition of subtypes. Besides, the WGML framework was compared with a LUAD subgrouping method from another research, which demonstrated that WGML had better efficiency for subgrouping LUAD.

CONCLUSION

This study provides a novel LUAD subgrouping framework named WGML for the accurate subgrouping of lung adenocarcinoma.

摘要

背景

由于肺腺癌(LUAD)具有高度异质性,这限制了治疗效果,因此对LUAD进行精确的分子亚组分类具有重要意义。临床研究表明,DNA甲基化作为人类恶性肿瘤的分类指标具有巨大潜力。

方法

开发了WGML框架(基于加权基因共表达网络分析(WGCNA)、基因本体论(GO)和机器学习开发)来精确划分LUAD的分子亚型。该框架包括两个部分:WG算法和机器学习部分。WG算法部分是一种用于获得关键模块的原创算法,其特点是加权相关网络分析、功能注释和数学算法。机器学习部分利用Boruta算法、随机森林算法和梯度提升回归树算法来选择特征基因。然后,基于WGML框架的结果,通过层次聚类算法计算亚型。利用一系列分析,包括降维方法、生存分析、临床分期分析、免疫浸润分析、肿瘤环境分析、免疫检查点分析、TIDE分析、CYT分析、体细胞突变分析和药物敏感性分析,来证明亚组分类的有效性。使用GEO数据集对结果进行外部验证。同时,采用另一项研究中的另一种LUAD亚组分类方法与WGML框架进行比较。

结果

通过将DNA甲基化数据导入WGML框架,获得了9个基因以进一步划分LUAD的亚组。识别出三种亚型,即致癌亚型、免疫浸润亚型和化疗耐药亚型。降维方法在各亚型之间表现出很大的差异。采用一系列分析来展示三种亚型之间的差异,并证明亚型定义的准确性。此外,将WGML框架与另一项研究中的LUAD亚组分类方法进行了比较,结果表明WGML在划分LUAD亚组方面具有更高的效率。

结论

本研究为肺腺癌的精确亚组分类提供了一种名为WGML的新型LUAD亚组分类框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验