Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum, NRW, Ruhr-Universität Bochum, Med. Fakultät OWL (Universität Bielefeld), Bad Oeynhausen, Germany.
Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum, NRW, Ruhr-Universität Bochum, Med. Fakultät OWL (Universität Bielefeld), Bad Oeynhausen, Germany.
Int J Cardiol. 2024 Sep 15;411:132233. doi: 10.1016/j.ijcard.2024.132233. Epub 2024 Jun 6.
Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challenging. Artificial intelligence (AI)-driven computed tomography (CT) segmentation of the RV might serve as a fast and predictive tool for evaluating patients prior to TTVR.
Patients suffering from severe tricuspid regurgitation underwent full cycle cardiac CT. AI-driven analyses were compared to conventional CT analyses. Outcome measures were correlated with survival free of rehospitalization for heart-failure or death after TTVR as the primary endpoint.
Automated AI-based image CT-analysis from 100 patients (mean age 77 ± 8 years, 63% female) showed excellent correlation for chamber quantification compared to conventional, core-lab evaluated CT analysis (R 0.963-0.966; p < 0.001). At 1 year (mean follow-up 229 ± 134 days) the primary endpoint occurred significantly more frequently in patients with reduced RV ejection fraction (EF) <50% (36.6% vs. 13.7%; HR 2.864, CI 1.212-6.763; p = 0.016). Furthermore, patients with dysfunctional RVs defined as end-diastolic RV volume > 210 ml and RV EF <50% demonstrated worse outcome than patients with functional RVs (43.7% vs. 12.2%; HR 3.753, CI 1.621-8.693; p = 0.002).
Derived RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR. AI-facilitated CT analysis serves as an inter- and intra-observer independent and time-effective tool which may thus aid in optimizing patient selection prior to TTVR in clinical routine and in trials.
从三维分析得出的基线右心室 (RV) 功能已被证明可预测接受经导管三尖瓣修复 (TTVR) 的患者。这些复杂分析的性质使得基于既定成像方法选择患者具有挑战性。人工智能 (AI) 驱动的 RV 计算机断层扫描 (CT) 分割可能成为 TTVR 前评估患者的快速且有预测性的工具。
患有严重三尖瓣反流的患者接受了全周期心脏 CT。比较了 AI 驱动的分析与常规 CT 分析。主要终点是无因心力衰竭再住院或死亡的 TTVR 后生存的结果测量与相关性。
来自 100 例患者(平均年龄 77 ± 8 岁,63%为女性)的自动 AI 基于图像的 CT 分析与常规、核心实验室评估的 CT 分析相比,对腔室定量具有出色的相关性(R 0.963-0.966;p < 0.001)。在 1 年(平均随访 229 ± 134 天)时,RV 射血分数 (EF) <50% 的患者(36.6% vs. 13.7%;HR 2.864,CI 1.212-6.763;p = 0.016)发生主要终点的频率显著更高。此外,定义为舒张末期 RV 容积> 210 ml 和 RV EF <50% 的功能障碍性 RV 患者的预后比功能性 RV 患者差(43.7% vs. 12.2%;HR 3.753,CI 1.621-8.693;p = 0.002)。
衍生的 RVEF 和功能障碍性 RV 是 TTVR 后死亡和住院的预测因素。AI 辅助 CT 分析是一种观察者间独立、省时且有效的工具,因此可帮助在临床试验和临床常规中优化 TTVR 前的患者选择。