Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
Genomics. 2024 Jul;116(4):110876. doi: 10.1016/j.ygeno.2024.110876. Epub 2024 Jun 5.
Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.
及时准确且具有成本效益的结直肠癌 (CRC) 检测具有重要的临床意义。本研究旨在建立使用血浆无细胞 DNA (cfDNA) 片段组学特征检测 CRC 的预测模型。对 620 名参与者(包括健康个体、良性结直肠疾病患者和 CRC 患者)的 cfDNA 进行全基因组测序 (WGS)。使用 WGS 数据,比较了三种机器学习方法来构建用于 CRC 患者分层的预测模型。最佳模型可区分所有阶段的 CRC 患者与健康个体,其敏感性为 92.31%,特异性为 91.14%,而区分早期 CRC 患者(0 期-II 期)与健康个体的模型的敏感性为 88.8%,特异性为 96.2%。此外,cfDNA 片段化谱反映了 CRC 中特定于疾病的基因组改变。总的来说,本研究表明 cfDNA 片段化谱可能成为一种非侵入性的 CRC 检测和分层方法。