Suppr超能文献

基于液态金属的微流控纳流控等离子体平台,用于即时现场抗体检测。

Liquid-metal-based microfluidic nanoplasmonic platform for point-of-care naked-eye antibody detection.

机构信息

State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China.

Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, PR China.

出版信息

Biosens Bioelectron. 2024 Oct 1;261:116469. doi: 10.1016/j.bios.2024.116469. Epub 2024 Jun 5.

Abstract

Despite high sensitivity of nanoparticle-on-mirror cavities, a crucial branch of plasmonic nanomaterials, complex preparation and readout processes limit their extensive application in biosensing. Alternatively, liquid metals (LMs) combining fluidity and excellent plasmonic characteristics have become potential candidates for constructing plasmonic nanostructures. Herein, we propose a microfluidic-integration strategy to construct LM-based immunoassay platform, enabling LM-based nanoplasmonic sensors to be used for point-of-care (POC) clinical biomarker detection. Flowable LM is introduced onto protein-coated Au nanoparticle monolayer to form a "mirror-on-nanoparticle" nanostructure, simplifying the fabrication process in the conventional nanoparticle-on-mirror cavities. When antibodies were captured by antigens coated on the Au nanoparticle monolayer, devices respond both thickness and refractive index change of biomolecular layers, outputting naked-eye readable signals with high sensitivity (limit of detection: ∼ 604 fM) and a broad dynamic range (6 orders). This new assay, which generates quantitative results in 30 min, allows for high-throughput, smartphone-based detection of SARS-CoV-2 antibodies against multiple variants in clinical serum or blood samples. These results establish an advanced avenue for POC testing with LM materials, and demonstrate its potential to facilitate diagnostics, surveillance and prevalence studies for various infectious diseases.

摘要

尽管纳米粒子镜腔(等离子体纳米材料的一个重要分支)具有很高的灵敏度,但复杂的制备和读出过程限制了其在生物传感中的广泛应用。相比之下,兼具流动性和优异等离子体特性的液态金属 (LM) 已成为构建等离子体纳米结构的潜在候选材料。在此,我们提出了一种微流控集成策略,用于构建基于 LM 的免疫分析平台,使基于 LM 的纳米等离子体传感器能够用于即时 (POC) 临床生物标志物检测。可流动的 LM 被引入到涂有蛋白质的 Au 纳米粒子单层上,形成“镜上纳米粒子”纳米结构,简化了传统纳米粒子镜腔中的制造过程。当抗体被涂覆在 Au 纳米粒子单层上的抗原捕获时,器件会响应生物分子层的厚度和折射率变化,输出具有高灵敏度(检测限:∼604 fM)和宽动态范围(6 个数量级)的肉眼可读信号。这种新的分析方法在 30 分钟内即可产生定量结果,可在临床血清或血液样本中对多种变体的 SARS-CoV-2 抗体进行高通量、基于智能手机的检测。这些结果为基于 LM 材料的即时检测建立了一个先进的途径,并证明了其在各种传染病的诊断、监测和流行研究中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验