Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
The Fourth Hospital of Harbin Medical University, Harbin 150001, China.
Genomics. 2024 Jul;116(4):110879. doi: 10.1016/j.ygeno.2024.110879. Epub 2024 Jun 6.
Although programmed cell death (PCD) and diabetic nephropathy (DN) are intrinsically conneted, the interplay among various PCD forms remains elusive. In this study, We aimed at identifying independently DN-associated PCD pathways and biomarkers relevant to the related pathogenesis.
We acquired DN-related datasets from the GEO database and identified PCDs independently correlated with DN (DN-PCDs) through single-sample Gene Set Enrichment Analysis (ssGSEA) as well as, univariate and multivariate logistic regression analyses. Subsequently, applying differential expression analysis, weighted gene co-expression network analysis (WGCNA), and Mfuzz cluster analysis, we filtered the DN-PCDs pertinent to DN onset and progression. The convergence of various machine learning techniques ultimately spotlighted hub genes, substantiated through dataset meta-analyses and experimental validations, thereby confirming hub genes and related pathways expression consistencies.
We harmonized four DN-related datasets (GSE1009, GSE142025, GSE30528, and GSE30529) post-batch-effect removal for subsequent analyses. Our differential expression analysis yielded 709 differentially expressed genes (DEGs), comprising 446 upregulated and 263 downregulated DEGs. Based on our ssGSEA as well as univariate and multivariate logistic regressions, apoptosis and NETotic cell death were appraised as independent risk factors for DN (Odds Ratio > 1, p < 0.05). Next, we further refined 588 apoptosis- and NETotic cell death-associated genes through WGCNA and Mfuzz analysis, resulting in the identification of 17 DN-PCDs. Integrating protein-protein interaction (PPI) network analyses, network topology, and machine learning, we pinpointed hub genes (e.g., IL33, RPL11, and CX3CR1) as significant DN risk factors with expression corroborating in subsequent meta-analyses and experimental validations. Our GSEA enrichment analysis discerned differential enrichments between DN and control samples within pathways such as IL2/STAT5, IL6/JAK/STAT3, TNF-α via NF-κB, apoptosis, and oxidative phosphorylation, with related proteins such as IL2, IL6, and TNFα, which we subsequently submitted to experimental verification.
Innovatively stemming from from PCD interactions, in this study, we discerned PCDs with an independent impact on DN: apoptosis and NETotic cell death. We further screened DN evolution- and progression-related biomarkers, i.e. IL33, RPL11, and CX3CR1, all of which we empirically validated. This study not only poroposes a PCD-centric perspective for DN studies but also provides evidence for PCD-mediated immune cell infiltration exploration in DN regulation. Our results could motivate further exploration of DN pathogenesis, such as how the inflammatory microenvironment mediates NETotic cell death in DN regulation, representing a promising direction for future research.
尽管程序性细胞死亡(PCD)和糖尿病肾病(DN)本质上是相关的,但各种 PCD 形式之间的相互作用仍然难以捉摸。在这项研究中,我们旨在确定与 DN 相关的独立 PCD 途径和与相关发病机制相关的生物标志物。
我们从 GEO 数据库中获取了与 DN 相关的数据集,并通过单样本基因集富集分析(ssGSEA)以及单变量和多变量逻辑回归分析,确定了与 DN 独立相关的 PCD(DN-PCD)。随后,通过差异表达分析、加权基因共表达网络分析(WGCNA)和 Mfuzz 聚类分析,我们筛选出与 DN 发病和进展相关的 DN-PCD。各种机器学习技术的融合最终突出了枢纽基因,通过数据集荟萃分析和实验验证得到证实,从而确认了枢纽基因和相关途径的表达一致性。
我们在进行后续分析之前,对四个与 DN 相关的数据集(GSE1009、GSE142025、GSE30528 和 GSE30529)进行了批次效应去除的协调。我们的差异表达分析产生了 709 个差异表达基因(DEGs),其中包括 446 个上调和 263 个下调的 DEGs。基于我们的 ssGSEA 以及单变量和多变量逻辑回归,细胞凋亡和 NET 细胞死亡被评估为 DN 的独立危险因素(优势比>1,p<0.05)。接下来,我们通过 WGCNA 和 Mfuzz 分析进一步细化了与细胞凋亡和 NET 细胞死亡相关的 588 个基因,从而确定了 17 个 DN-PCD。通过整合蛋白质-蛋白质相互作用(PPI)网络分析、网络拓扑和机器学习,我们确定了枢纽基因(如 IL33、RPL11 和 CX3CR1)作为具有后续荟萃分析和实验验证支持的重要 DN 危险因素。我们的 GSEA 富集分析在途径(如 IL2/STAT5、IL6/JAK/STAT3、TNF-α 通过 NF-κB、细胞凋亡和氧化磷酸化)中辨别了 DN 和对照样本之间的差异富集,以及相关蛋白(如 IL2、IL6 和 TNFα),我们随后提交了实验验证。
本研究创新性地从 PCD 相互作用出发,发现了对 DN 具有独立影响的 PCD:细胞凋亡和 NET 细胞死亡。我们进一步筛选了与 DN 进化和进展相关的生物标志物,即 IL33、RPL11 和 CX3CR1,我们都通过实验验证进行了验证。本研究不仅为 DN 研究提出了以 PCD 为中心的观点,还为 PCD 介导的免疫细胞浸润在 DN 调控中的探索提供了证据。我们的研究结果可以激发对 DN 发病机制的进一步探索,例如炎症微环境如何调节 DN 中的 NET 细胞死亡,这是未来研究的一个有前途的方向。