Suppr超能文献

鉴定与线粒体相关的基因作为糖尿病肾病的诊断生物标志物及其与免疫浸润的相关性:生物信息学分析的新见解。

Identification of mitochondria-related genes as diagnostic biomarkers for diabetic nephropathy and their correlation with immune infiltration: New insights from bioinformatics analysis.

机构信息

The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.

The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China.

出版信息

Int Immunopharmacol. 2024 Dec 5;142(Pt A):113114. doi: 10.1016/j.intimp.2024.113114. Epub 2024 Sep 12.

Abstract

BACKGROUND

Diabetic nephropathy (DN) is a common and severe microvascular complication of diabetes. Mitochondrial dysfunction and immune inflammation are important factors in the pathogenesis of DN. However, the specific mechanisms and their intricate interactions in DN remain unclear. Besides, there are no effective specific predictive or diagnostic biomarkers for DN so far. Therefore, this study aims to elucidate the role of mitochondrial-related genes and their possibility as predictive or diagnostic biomarkers, as well as their crosstalk with immune infiltration in the progression of DN.

METHODS

Based on the GEO database and limma R package, the differentially expressed genes (DEGs) of DN were identified. Mitochondrial-related DEGs (MitoDEGs) were then obtained by intersecting these DEGs with mitochondria-related genes from the MitoCarta 3.0 database. Subsequently, the candidate hub genes were further screened by gene co-expression network analysis (WGCNA), and verified mRNA levels of these genes by real-time quantitative PCR (qRT-PCR) in high-glucose-treated human proximal tubular (HK-2) cells. The verified hub genes were utilized to construct a combined diagnostic model for DN, with its diagnostic efficacy assessed across the GSE30122 and GSE96804 datasets. Additionally, the immune infiltration pattern in DN was assessed with the CIBERSORT algorithm, and the Nephroseq v5 database was used to analyze the correlation between hub genes and clinical features of DN.

RESULTS

Seven mitochondria-related candidate hub genes were screened from 56 MitoDEGs. Subsequently, the expression levels of six of them, namely EFHD1, CASP3, AASS, MPC1, NT5DC2, and BCL2A1, exhibited significant inter-group differences in the HK-2 cell model. The diagnostic model based on the six genes demonstrated good diagnostic efficacy in both training and validation sets. Furthermore, correlation analysis indicated that EFHD1 and AASS, downregulated in DN, are positively correlated with eGFR and negatively with serum creatinine. Conversely, CASP3, NT5DC2, and BCL2A1, upregulated in DN, show opposite correlations. In addition, spearman analysis revealed that the six hub genes were significantly associated with the infiltration of immune cells, including M1 and M2 macrophages, mast cells, resting NK cells, gamma delta T cells, and follicular helper T cells.

CONCLUSION

This study elucidated the characteristics of mitochondria-related genes and their correlation with immune cell infiltration in DN, providing new insights for exploring the pathogenesis of DN and facilitating the identification of new potential biomarkers and therapeutic targets.

摘要

背景

糖尿病肾病(DN)是糖尿病常见且严重的微血管并发症。线粒体功能障碍和免疫炎症是 DN 发病机制中的重要因素。然而,DN 中的具体机制及其复杂相互作用仍不清楚。此外,目前尚无有效的特异性预测或诊断 DN 的生物标志物。因此,本研究旨在阐明与线粒体相关的基因在 DN 进展中的作用及其作为预测或诊断生物标志物的可能性,以及它们与免疫浸润的相互作用。

方法

基于 GEO 数据库和 limma R 包,鉴定了 DN 的差异表达基因(DEGs)。然后通过将这些 DEGs 与 MitoCarta 3.0 数据库中的线粒体相关基因进行交集,获得线粒体相关差异表达基因(MitoDEGs)。随后,通过基因共表达网络分析(WGCNA)进一步筛选候选枢纽基因,并通过实时定量 PCR(qRT-PCR)在高糖处理的人近端肾小管(HK-2)细胞中验证这些基因的 mRNA 水平。利用验证的枢纽基因构建了用于诊断 DN 的组合诊断模型,并在 GSE30122 和 GSE96804 数据集评估了其诊断效果。此外,使用 CIBERSORT 算法评估了 DN 中的免疫浸润模式,并使用 Nephroseq v5 数据库分析了枢纽基因与 DN 临床特征的相关性。

结果

从 56 个 MitoDEGs 中筛选出 7 个与线粒体相关的候选枢纽基因。随后,在 HK-2 细胞模型中,其中 6 个基因(EFHD1、CASP3、AASS、MPC1、NT5DC2 和 BCL2A1)的表达水平表现出显著的组间差异。基于这 6 个基因的诊断模型在训练集和验证集均表现出良好的诊断效能。此外,相关性分析表明,DN 中下调的 EFHD1 和 AASS 与 eGFR 呈正相关,与血清肌酐呈负相关。相反,DN 中上调的 CASP3、NT5DC2 和 BCL2A1 则呈相反的相关性。此外,Spearman 分析表明,这 6 个枢纽基因与包括 M1 和 M2 巨噬细胞、肥大细胞、静止 NK 细胞、γδ T 细胞和滤泡辅助 T 细胞在内的免疫细胞浸润显著相关。

结论

本研究阐明了与线粒体相关的基因在 DN 中的特征及其与免疫细胞浸润的相关性,为探索 DN 的发病机制提供了新的见解,并有助于发现新的潜在生物标志物和治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验