School of Optometry, Jiangxi Medical College, Nanchang University, China; Jiangxi Research Institute of Ophthalmology and Visual Science, China; Jiangxi Provincial Key Laboratory for Ophthalmology, China.
The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China; Jiangxi Clinical Research Center for Ophthalmic Disease, China.
J Stomatol Oral Maxillofac Surg. 2024 Oct;125(5S2):101938. doi: 10.1016/j.jormas.2024.101938. Epub 2024 Jun 6.
In ophthalmic surgery, different materials and fixation methods are employed for bone flap repositioning after lateral orbitotomy approach (LOA), yet there is no unified standard. This study aims to investigate the impact of different fixation strategies on orbital stability through Finite Element Analysis (FEA) simulations of the biomechanical environment for orbital rim fixation in LOA.
A Finite Element Model (FEM) was established and validated to simulate the mechanical responses under various loads in conventional lateral orbitotomy approach (CLOA) and deep lateral orbital decompression (DLOD) using single titanium plate, double titanium plates, and double absorbable plates fixation methods. The simulations were then validated against clinical cases.
Under similar conditions, the maximum equivalent stress (MES) on titanium alloy fixations was greater than that on absorbable plate materials. Both under static and physiological conditions, all FEM groups ensured structural stability of the system, with material stresses remaining within safe ranges. Compared to CLOA, DLOD, which involves the removal of the lateral orbital wall, altered stress conduction, resulting in an increase of MES and maximum total deformation (MTD) by 1.96 and 2.62 times, respectively. Under a horizontal load of 50 N, the MES in FEM/DLOD exceeded the material's own strength, with an increase in MES and MTD by 3.18 and 6.64 times, respectively, compared to FEM/CLOA. Under a vertical force of 50 N, the MES sustained by each FEM was within safe limits. Bone flap rotation angles remained minimally varied across scenarios. During follow-up, the 12 patients validated in this study did not experience complications related to the internal fixation devices.
Under static or physiological conditions, various fixation methods can effectively maintain stability at the orbitotomy site, and absorbable materials, with their smoother stress transmission properties, are more suited for application in CLOA. Among titanium plate fixations, single titanium plates can better withstand vertical stress, while double titanium plates are more capable of handling horizontal stress. Given the change in the orbital mechanical behavior due to DLOD, enhanced fixation strength should be considered for bone flap repositioning.
在眼科手术中,外侧眶切开术(LOA)后采用不同的材料和固定方法进行骨瓣复位,但目前尚无统一标准。本研究旨在通过 LOA 眶缘固定的生物力学环境的有限元分析(FEA)模拟,探讨不同固定策略对眼眶稳定性的影响。
建立并验证了有限元模型(FEM),以模拟传统外侧眶切开术(CLOA)和深层外侧眶减压术(DLOD)在不同载荷下的力学响应,采用单钛板、双钛板和双可吸收板固定方法。然后将模拟结果与临床病例进行验证。
在相似条件下,钛合金固定物的最大等效应力(MES)大于可吸收板材料。在静态和生理条件下,所有 FEM 组均确保了系统的结构稳定性,材料应力均保持在安全范围内。与 CLOA 相比,涉及外侧眶壁切除的 DLOD 改变了应力传导,导致 MES 和最大总变形(MTD)分别增加 1.96 倍和 2.62 倍。在 50 N 水平载荷下,FEM/DLOD 的 MES 超过了材料自身强度,MES 和 MTD 分别增加了 3.18 倍和 6.64 倍,与 FEM/CLOA 相比。在 50 N 垂直力下,每个 FEM 承受的 MES 均在安全范围内。在不同情况下,骨瓣旋转角度变化很小。在随访期间,本研究中验证的 12 例患者均未出现与内置固定装置相关的并发症。
在静态或生理条件下,各种固定方法均可有效维持眶切开部位的稳定性,可吸收材料具有更平滑的应力传递特性,更适合应用于 CLOA。在钛板固定中,单钛板能更好地承受垂直应力,而双钛板更能承受水平应力。鉴于 DLOD 引起的眼眶力学行为改变,对于骨瓣复位应考虑增强固定强度。