Department of Radiological Technology, Faculty of Medical Sciences, Kyoto College of Medical Science, Nantan, Japan.
Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Magn Reson Med. 2024 Nov;92(5):2163-2180. doi: 10.1002/mrm.30184. Epub 2024 Jun 9.
Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBV). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consuming parameter estimation. Deep neural networks (DNNs) offer a solution to these limitations. Therefore, we aimed to develop simulation-based DNNs for MP-ASL and compared the performance of a supervised DNN (DNN), physics-informed unsupervised DNN (DNN), and the conventional lookup table method (LUT) using simulation and in vivo data.
MP-ASL was performed twice during resting state and once during the breath-holding task. First, the accuracy and noise immunity were evaluated in the first resting state. Second, CBF and CBV values were statistically compared between the first resting state and the breath-holding task using the Wilcoxon signed-rank test and Cliff's delta. Finally, reproducibility of the two resting states was assessed.
Simulation and first resting-state analyses demonstrated that DNN had higher accuracy, noise immunity, and a six-fold faster computation time than LUT. Furthermore, all methods detected task-induced CBF and CBV elevations, with the effect size being larger with the DNN (CBF, p = 0.055, Δ = 0.286; CBV, p = 0.008, Δ = 0.964) and DNN (CBF, p = 0.039, Δ = 0.286; CBV, p = 0.008, Δ = 1.000) than that with LUT (CBF, p = 0.109, Δ = 0.214; CBV, p = 0.008, Δ = 0.929). Moreover, all the methods exhibited comparable and satisfactory reproducibility.
DNN outperforms DNN and LUT with respect to estimation performance and computation time.
多参数动脉自旋标记(MP-ASL)可定量脑血流(CBF)和动脉脑血容量(CBV)。然而,由于其固有的低信噪比,其准确性受到影响,需要进行复杂且耗时的参数估计。深度神经网络(DNN)为解决这些限制提供了一种解决方案。因此,我们旨在开发基于仿真的 MP-ASL 的 DNN,并通过仿真和体内数据比较监督 DNN(DNN)、物理信息无监督 DNN(DNN)和传统查找表方法(LUT)的性能。
在静息状态下进行两次 MP-ASL,在屏气任务下进行一次。首先,在第一次静息状态下评估准确性和噪声免疫能力。其次,使用 Wilcoxon 符号秩检验和 Cliff's delta 对第一次静息状态和屏气任务之间的 CBF 和 CBV 值进行统计学比较。最后,评估两个静息状态的重现性。
仿真和第一次静息状态分析表明,DNN 的准确性、噪声免疫能力和计算速度分别比 LUT 高六倍。此外,所有方法均检测到任务诱导的 CBF 和 CBV 升高,而 DNN 的效果大小更大(CBF,p=0.055,Δ=0.286;CBV,p=0.008,Δ=0.964)和 DNN(CBF,p=0.039,Δ=0.286;CBV,p=0.008,Δ=1.000)比 LUT(CBF,p=0.109,Δ=0.214;CBV,p=0.008,Δ=0.929)更大。此外,所有方法均表现出可比较且令人满意的重现性。
DNN 在估计性能和计算时间方面优于 DNN 和 LUT。