Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA.
J Inorg Biochem. 2024 Sep;258:112633. doi: 10.1016/j.jinorgbio.2024.112633. Epub 2024 Jun 5.
The NO dioxygenation reaction catalyzed by heme-containing globin proteins is a crucial aerobic detoxification pathway. Accordingly, the second order reaction of NO with oxymyoglobin and oxyhemoglobin has been the focus of a large number of kinetic and spectroscopic studies. Stopped-flow and rapid-freeze-quench (RFQ) measurements have provided evidence for the formation of a Fe(III)-nitrato complex with millisecond lifetime prior to release of the nitrate product, but the temporal resolution of these techniques is insufficient for the characterization of precursor species. Most mechanistic models assume the formation of an initial Fe(III)-peroxynitrite species prior to homolytic cleavage of the OO bond and recombination of the resulting NO and Fe(IV)=O species. Here we report vibrational spectroscopy measurements for the reaction of oxymyoglobin with a photolabile caged NO donor at cryogenic temperatures. We show that this approach offers efficient formation and trapping of the Fe(III)-nitrato, enzyme-product, complex at 180 K. Resonance Raman spectra of the Fe(III)-nitrato complex trapped via RFQ in the liquid phase and photolabile NO release at cryogenic temperatures are indistinguishable, demonstrating the complementarity of these approaches. Caged NO is released by irradiation <180 K but diffusion into the heme pocket is fully inhibited. Our data provide no evidence for Fe(III)-peroxynitrite of Fe(IV)=O species, supporting low activation energies for the NO to nitrate conversion at the oxymyoglobin reaction site. Photorelease of NO at cryogenic temperatures allows monitoring of the reaction by transmittance FTIR which provides valuable quantitative information and promising prospects for the detection of protein sidechain reorganization events in NO-reacting metalloenzymes.
血红素球蛋白蛋白催化的 NO 去氧反应是一种重要的需氧解毒途径。因此,NO 与氧合肌红蛋白和氧合血红蛋白的二级反应一直是大量动力学和光谱研究的焦点。停流和快速冷冻淬火(RFQ)测量为形成具有毫秒寿命的 Fe(III)-硝酸盐络合物提供了证据,然后释放硝酸盐产物,但这些技术的时间分辨率不足以表征前体物种。大多数机制模型假设在 OO 键均裂和生成的 NO 和 Fe(IV)=O 物种的重组之前,形成初始 Fe(III)-过氧亚硝酸盐物种。在这里,我们报告了在低温下用光解笼状 NO 供体与氧合肌红蛋白反应的振动光谱测量结果。我们表明,这种方法在 180 K 时提供了高效的 Fe(III)-硝酸盐、酶产物络合物的形成和捕获。通过 RFQ 在液相中捕获的 Fe(III)-硝酸盐络合物的共振拉曼光谱与低温下光解 NO 的释放无法区分,证明了这些方法的互补性。在 <180 K 下用光照射释放笼状 NO,但扩散到血红素口袋完全被抑制。我们的数据没有为 Fe(III)-过氧亚硝酸盐或 Fe(IV)=O 物种提供证据,支持在氧合肌红蛋白反应位点上 NO 向硝酸盐转化的低活化能。低温下的光解 NO 释放允许通过透射傅里叶变换红外光谱(FTIR)监测反应,这提供了有价值的定量信息,并为检测 NO 反应金属酶中蛋白质侧链重排事件提供了有希望的前景。