RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Akoh, Hyogo, 678-1297, Japan.
Nat Commun. 2017 Nov 17;8(1):1585. doi: 10.1038/s41467-017-01702-1.
Time-resolved serial femtosecond crystallography using an X-ray free electron laser (XFEL) in conjunction with a photosensitive caged-compound offers a crystallographic method to track enzymatic reactions. Here we demonstrate the application of this method using fungal NO reductase, a heme-containing enzyme, at room temperature. Twenty milliseconds after caged-NO photolysis, we identify a NO-bound form of the enzyme, which is an initial intermediate with a slightly bent Fe-N-O coordination geometry at a resolution of 2.1 Å. The NO geometry is compatible with those analyzed by XFEL-based cryo-crystallography and QM/MM calculations, indicating that we obtain an intact Fe-NO coordination structure that is free of X-ray radiation damage. The slightly bent NO geometry is appropriate to prevent immediate NO dissociation and thus accept H from NADH. The combination of using XFEL and a caged-compound is a powerful tool for determining functional enzyme structures during catalytic reactions at the atomic level.
利用 X 射线自由电子激光(XFEL)与光敏感笼状化合物结合的时间分辨连续飞秒晶体学为追踪酶反应提供了一种晶体学方法。在这里,我们在室温下使用真菌一氧化氮还原酶(一种含血红素的酶)展示了该方法的应用。在笼状-NO 光解后 20 毫秒,我们鉴定出酶的一种与 NO 结合的形式,这是一个略微弯曲的 Fe-N-O 配位几何的初始中间产物,分辨率为 2.1 Å。NO 几何形状与基于 XFEL 的低温晶体学和 QM/MM 计算分析的结果相匹配,表明我们获得了完整的 Fe-NO 配位结构,不受 X 射线辐射损伤的影响。略微弯曲的 NO 几何形状有助于防止 NO 立即解离,从而接受 NADH 的 H。使用 XFEL 和笼状化合物的组合是在原子水平上确定催化反应过程中功能性酶结构的有力工具。